Pythagorean Fuzzy Interaction Muirhead Means with Their Application to Multi-Attribute Group Decision-Making

Due to the increased complexity of real decision-making problems, representing attribute values correctly and appropriately is always a challenge. The recently proposed Pythagorean fuzzy set (PFS) is a powerful and useful tool for handling fuzziness and vagueness. The feature of PFS that the square...

Full description

Bibliographic Details
Main Authors: Yuan Xu, Xiaopu Shang, Jun Wang
Format: Article
Language:English
Published: MDPI AG 2018-06-01
Series:Information
Subjects:
Online Access:http://www.mdpi.com/2078-2489/9/7/157
Description
Summary:Due to the increased complexity of real decision-making problems, representing attribute values correctly and appropriately is always a challenge. The recently proposed Pythagorean fuzzy set (PFS) is a powerful and useful tool for handling fuzziness and vagueness. The feature of PFS that the square sum of membership and non-membership degrees should be less than or equal to one provides more freedom for decision makers to express their assessments and further results in less information loss. The aim of this paper is to develop some Pythagorean fuzzy aggregation operators to aggregate Pythagorean fuzzy numbers (PFNs). Additionally, we propose a novel approach to multi-attribute group decision-making (MAGDM) based on the proposed operators. Considering the Muirhead mean (MM) can capture the interrelationship among all arguments, and the interaction operational rules for PFNs can make calculation results more reasonable, to take full advantage of both, we extend MM to PFSs and propose a family of Pythagorean fuzzy interaction Muirhead mean operators. Some desirable properties and special cases of the proposed operators are also investigated. Further, we present a novel approach to MAGDM with Pythagorean fuzzy information. Finally, we provide a numerical instance to illustrate the validity of the proposed model. In addition, we perform a comparative analysis to show the superiorities of the proposed method.
ISSN:2078-2489