A generalization of the alcove model and its applications

The alcove model of the first author and Postnikov describes highest weight crystals of semisimple Lie algebras. We present a generalization, called the quantum alcove model, and conjecture that it uniformly describes tensor products of column shape Kirillov-Reshetikhin crystals, for all untwisted a...

Full description

Bibliographic Details
Main Authors: Cristian Lenart, Arthur Lubovsky
Format: Article
Language:English
Published: Discrete Mathematics & Theoretical Computer Science 2012-01-01
Series:Discrete Mathematics & Theoretical Computer Science
Subjects:
Online Access:https://dmtcs.episciences.org/3090/pdf
Description
Summary:The alcove model of the first author and Postnikov describes highest weight crystals of semisimple Lie algebras. We present a generalization, called the quantum alcove model, and conjecture that it uniformly describes tensor products of column shape Kirillov-Reshetikhin crystals, for all untwisted affine types. We prove the conjecture in types $A$ and $C$. We also present evidence for the fact that a related statistic computes the energy function.
ISSN:1365-8050