Flat-Silk-Cocoon-Based Wearable Flexible Piezoresistive Sensor and Its Performance

Flexible sensors are becoming the focus of research because they are very vital for intelligent products, real-time data monitoring, and recording. The flat silk cocoon (FSC), as a special form of cocoon, has all the advantages of silk, which is an excellent biomass carbon-based material and a good...

Full description

Bibliographic Details
Main Authors: Zulan Liu, Mengyao Cai, Rui Jia, Xiang Xu, Mengting Xu, Guotao Cheng, Lan Cheng, Fangyin Dai
Format: Article
Language:English
Published: MDPI AG 2024-01-01
Series:Polymers
Subjects:
Online Access:https://www.mdpi.com/2073-4360/16/2/295
Description
Summary:Flexible sensors are becoming the focus of research because they are very vital for intelligent products, real-time data monitoring, and recording. The flat silk cocoon (FSC), as a special form of cocoon, has all the advantages of silk, which is an excellent biomass carbon-based material and a good choice for preparing flexible sensors. In this work, a flexible piezoresistive sensor was successfully prepared by encapsulating carbonized flat silk cocoons (CFSCs) using an elastic matrix polydimethylsiloxane (PDMS). The sensing performance of the material is 0.01 kPa<sup>−1</sup>, and the monitoring range can reach 680.57 kPa. It is proved that the sensor can detect human motion and has excellent durability (>800 cycles). In addition, a sensor array for a keyboard based on CFSCs was explored. The sensor has a low production cost and a simple preparation process, and it is sustainable and environmentally friendly. Thus, it may have potential applications in wearable devices and human–computer interactions.
ISSN:2073-4360