Energy simulation and CFD coupled analysis for the optimal operation of combined convection and radiant air conditioning considering dehumidification

The use of radiant panels in homes has increased recently because they do not cause a drafty feeling, unlike air conditioners. However, air conditioners are more power-efficient than radiant panels and have a higher coefficient of performance (COP). Therefore, combining radiant panels and air condit...

Full description

Bibliographic Details
Main Authors: Tatsuhiro Yamamoto, Akihito Ozaki, Keigo Aratsu, Ryo Fukui
Format: Article
Language:English
Published: Elsevier 2023-07-01
Series:Heliyon
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2405844023053008
Description
Summary:The use of radiant panels in homes has increased recently because they do not cause a drafty feeling, unlike air conditioners. However, air conditioners are more power-efficient than radiant panels and have a higher coefficient of performance (COP). Therefore, combining radiant panels and air conditioning can provide an optimal solution for thermal control in residences. Energy simulation (ES) and computational fluid dynamics (CFD) can be used to simulate such environments. ES is suitable for non-steady state calculations, and combined with appropriate modeling, enables an accurate estimation of power consumption. Effective dehumidification becomes necessary, during summer as the relative humidity in a room increases. Both air conditioners and radiant panels can achieve this. This study developed a simulation tool that incorporates the effects of dehumidification. Based on a relative evaluation, a case was proposed where both energy efficiency and comfort were satisfied by jointly using air conditioners and radiant panels. The study found that a small number of panels could achieve the most balanced operation. The results of this study can serve as a reference for general housing, and the developed simulation tool can be applied to product development and building material design.
ISSN:2405-8440