New Fixed Point Theorems in Orthogonal <inline-formula> <mml:math id="mm501" display="block"> <mml:semantics> <mml:mi mathvariant="script">F</mml:mi> </mml:semantics> </mml:math> </inline-formula>-Metric Spaces with Application to Fractional Differential Equation
We present the notion of orthogonal <inline-formula> <math display="inline"> <semantics> <mi mathvariant="script">F</mi> </semantics> </math> </inline-formula>-metric spaces and prove some fixed and periodic point theorems for ortho...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-05-01
|
Series: | Symmetry |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-8994/12/5/832 |
_version_ | 1797567560375336960 |
---|---|
author | Tanzeela Kanwal Azhar Hussain Hamid Baghani Manuel de la Sen |
author_facet | Tanzeela Kanwal Azhar Hussain Hamid Baghani Manuel de la Sen |
author_sort | Tanzeela Kanwal |
collection | DOAJ |
description | We present the notion of orthogonal <inline-formula> <math display="inline"> <semantics> <mi mathvariant="script">F</mi> </semantics> </math> </inline-formula>-metric spaces and prove some fixed and periodic point theorems for orthogonal <inline-formula> <math display="inline"> <semantics> <msub> <mo>⊥</mo> <mi mathvariant="sans-serif">Ω</mi> </msub> </semantics> </math> </inline-formula>-contraction. We give a nontrivial example to prove the validity of our result. Finally, as application, we prove the existence and uniqueness of the solution of a nonlinear fractional differential equation. |
first_indexed | 2024-03-10T19:43:44Z |
format | Article |
id | doaj.art-55f1be807717467ca8558e5eb5c035a5 |
institution | Directory Open Access Journal |
issn | 2073-8994 |
language | English |
last_indexed | 2024-03-10T19:43:44Z |
publishDate | 2020-05-01 |
publisher | MDPI AG |
record_format | Article |
series | Symmetry |
spelling | doaj.art-55f1be807717467ca8558e5eb5c035a52023-11-20T00:57:58ZengMDPI AGSymmetry2073-89942020-05-0112583210.3390/sym12050832New Fixed Point Theorems in Orthogonal <inline-formula> <mml:math id="mm501" display="block"> <mml:semantics> <mml:mi mathvariant="script">F</mml:mi> </mml:semantics> </mml:math> </inline-formula>-Metric Spaces with Application to Fractional Differential EquationTanzeela Kanwal0Azhar Hussain1Hamid Baghani2Manuel de la Sen3Department of Mathematics, University of Sargodha, Sargodha 40100, PakistanNonlinear Analysis Research Group, Ton Duc Thang University, Ho Chi Minh City 758307, VietnamDepartment of Mathematics, Faculty of Mathematics, University of Sistan and Baluchestan, Zahedan P.O. Box 98155-987, IranInstitute of Research and Development of Processes IIDP University of the Basque Country Campus of Leioa, PO Box 48940, Leioa, 48940 Bizkaia, SpainWe present the notion of orthogonal <inline-formula> <math display="inline"> <semantics> <mi mathvariant="script">F</mi> </semantics> </math> </inline-formula>-metric spaces and prove some fixed and periodic point theorems for orthogonal <inline-formula> <math display="inline"> <semantics> <msub> <mo>⊥</mo> <mi mathvariant="sans-serif">Ω</mi> </msub> </semantics> </math> </inline-formula>-contraction. We give a nontrivial example to prove the validity of our result. Finally, as application, we prove the existence and uniqueness of the solution of a nonlinear fractional differential equation.https://www.mdpi.com/2073-8994/12/5/832orthogonal setℱ-metric spaceBanach fixed point theorem |
spellingShingle | Tanzeela Kanwal Azhar Hussain Hamid Baghani Manuel de la Sen New Fixed Point Theorems in Orthogonal <inline-formula> <mml:math id="mm501" display="block"> <mml:semantics> <mml:mi mathvariant="script">F</mml:mi> </mml:semantics> </mml:math> </inline-formula>-Metric Spaces with Application to Fractional Differential Equation Symmetry orthogonal set ℱ-metric space Banach fixed point theorem |
title | New Fixed Point Theorems in Orthogonal <inline-formula>
<mml:math id="mm501" display="block">
<mml:semantics>
<mml:mi mathvariant="script">F</mml:mi>
</mml:semantics>
</mml:math>
</inline-formula>-Metric Spaces with Application to Fractional Differential Equation |
title_full | New Fixed Point Theorems in Orthogonal <inline-formula>
<mml:math id="mm501" display="block">
<mml:semantics>
<mml:mi mathvariant="script">F</mml:mi>
</mml:semantics>
</mml:math>
</inline-formula>-Metric Spaces with Application to Fractional Differential Equation |
title_fullStr | New Fixed Point Theorems in Orthogonal <inline-formula>
<mml:math id="mm501" display="block">
<mml:semantics>
<mml:mi mathvariant="script">F</mml:mi>
</mml:semantics>
</mml:math>
</inline-formula>-Metric Spaces with Application to Fractional Differential Equation |
title_full_unstemmed | New Fixed Point Theorems in Orthogonal <inline-formula>
<mml:math id="mm501" display="block">
<mml:semantics>
<mml:mi mathvariant="script">F</mml:mi>
</mml:semantics>
</mml:math>
</inline-formula>-Metric Spaces with Application to Fractional Differential Equation |
title_short | New Fixed Point Theorems in Orthogonal <inline-formula>
<mml:math id="mm501" display="block">
<mml:semantics>
<mml:mi mathvariant="script">F</mml:mi>
</mml:semantics>
</mml:math>
</inline-formula>-Metric Spaces with Application to Fractional Differential Equation |
title_sort | new fixed point theorems in orthogonal inline formula mml math id mm501 display block mml semantics mml mi mathvariant script f mml mi mml semantics mml math inline formula metric spaces with application to fractional differential equation |
topic | orthogonal set ℱ-metric space Banach fixed point theorem |
url | https://www.mdpi.com/2073-8994/12/5/832 |
work_keys_str_mv | AT tanzeelakanwal newfixedpointtheoremsinorthogonalinlineformulammlmathidmm501displayblockmmlsemanticsmmlmimathvariantscriptfmmlmimmlsemanticsmmlmathinlineformulametricspaceswithapplicationtofractionaldifferentialequation AT azharhussain newfixedpointtheoremsinorthogonalinlineformulammlmathidmm501displayblockmmlsemanticsmmlmimathvariantscriptfmmlmimmlsemanticsmmlmathinlineformulametricspaceswithapplicationtofractionaldifferentialequation AT hamidbaghani newfixedpointtheoremsinorthogonalinlineformulammlmathidmm501displayblockmmlsemanticsmmlmimathvariantscriptfmmlmimmlsemanticsmmlmathinlineformulametricspaceswithapplicationtofractionaldifferentialequation AT manueldelasen newfixedpointtheoremsinorthogonalinlineformulammlmathidmm501displayblockmmlsemanticsmmlmimathvariantscriptfmmlmimmlsemanticsmmlmathinlineformulametricspaceswithapplicationtofractionaldifferentialequation |