A mechanistic spatio-temporal framework for modelling individual-to-individual transmission-With an application to the 2014-2015 West Africa Ebola outbreak.

In recent years there has been growing availability of individual-level spatio-temporal disease data, particularly due to the use of modern communicating devices with GPS tracking functionality. These detailed data have been proven useful for inferring disease transmission to a more refined level th...

Full description

Bibliographic Details
Main Authors: Max S Y Lau, Gavin J Gibson, Hola Adrakey, Amanda McClelland, Steven Riley, Jon Zelner, George Streftaris, Sebastian Funk, Jessica Metcalf, Benjamin D Dalziel, Bryan T Grenfell
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2017-10-01
Series:PLoS Computational Biology
Online Access:https://doi.org/10.1371/journal.pcbi.1005798
_version_ 1818348840193884160
author Max S Y Lau
Max S Y Lau
Gavin J Gibson
Hola Adrakey
Amanda McClelland
Steven Riley
Jon Zelner
George Streftaris
Sebastian Funk
Jessica Metcalf
Benjamin D Dalziel
Bryan T Grenfell
author_facet Max S Y Lau
Max S Y Lau
Gavin J Gibson
Hola Adrakey
Amanda McClelland
Steven Riley
Jon Zelner
George Streftaris
Sebastian Funk
Jessica Metcalf
Benjamin D Dalziel
Bryan T Grenfell
author_sort Max S Y Lau
collection DOAJ
description In recent years there has been growing availability of individual-level spatio-temporal disease data, particularly due to the use of modern communicating devices with GPS tracking functionality. These detailed data have been proven useful for inferring disease transmission to a more refined level than previously. However, there remains a lack of statistically sound frameworks to model the underlying transmission dynamic in a mechanistic manner. Such a development is particularly crucial for enabling a general epidemic predictive framework at the individual level. In this paper we propose a new statistical framework for mechanistically modelling individual-to-individual disease transmission in a landscape with heterogeneous population density. Our methodology is first tested using simulated datasets, validating our inferential machinery. The methodology is subsequently applied to data that describes a regional Ebola outbreak in Western Africa (2014-2015). Our results show that the methods are able to obtain estimates of key epidemiological parameters that are broadly consistent with the literature, while revealing a significantly shorter distance of transmission. More importantly, in contrast to existing approaches, we are able to perform a more general model prediction that takes into account the susceptible population. Finally, our results show that, given reasonable scenarios, the framework can be an effective surrogate for susceptible-explicit individual models which are often computationally challenging.
first_indexed 2024-12-13T17:56:27Z
format Article
id doaj.art-55f8213ef28e4cc8ab0169a36c71f29d
institution Directory Open Access Journal
issn 1553-734X
1553-7358
language English
last_indexed 2024-12-13T17:56:27Z
publishDate 2017-10-01
publisher Public Library of Science (PLoS)
record_format Article
series PLoS Computational Biology
spelling doaj.art-55f8213ef28e4cc8ab0169a36c71f29d2022-12-21T23:36:22ZengPublic Library of Science (PLoS)PLoS Computational Biology1553-734X1553-73582017-10-011310e100579810.1371/journal.pcbi.1005798A mechanistic spatio-temporal framework for modelling individual-to-individual transmission-With an application to the 2014-2015 West Africa Ebola outbreak.Max S Y LauMax S Y LauGavin J GibsonHola AdrakeyAmanda McClellandSteven RileyJon ZelnerGeorge StreftarisSebastian FunkJessica MetcalfBenjamin D DalzielBryan T GrenfellIn recent years there has been growing availability of individual-level spatio-temporal disease data, particularly due to the use of modern communicating devices with GPS tracking functionality. These detailed data have been proven useful for inferring disease transmission to a more refined level than previously. However, there remains a lack of statistically sound frameworks to model the underlying transmission dynamic in a mechanistic manner. Such a development is particularly crucial for enabling a general epidemic predictive framework at the individual level. In this paper we propose a new statistical framework for mechanistically modelling individual-to-individual disease transmission in a landscape with heterogeneous population density. Our methodology is first tested using simulated datasets, validating our inferential machinery. The methodology is subsequently applied to data that describes a regional Ebola outbreak in Western Africa (2014-2015). Our results show that the methods are able to obtain estimates of key epidemiological parameters that are broadly consistent with the literature, while revealing a significantly shorter distance of transmission. More importantly, in contrast to existing approaches, we are able to perform a more general model prediction that takes into account the susceptible population. Finally, our results show that, given reasonable scenarios, the framework can be an effective surrogate for susceptible-explicit individual models which are often computationally challenging.https://doi.org/10.1371/journal.pcbi.1005798
spellingShingle Max S Y Lau
Max S Y Lau
Gavin J Gibson
Hola Adrakey
Amanda McClelland
Steven Riley
Jon Zelner
George Streftaris
Sebastian Funk
Jessica Metcalf
Benjamin D Dalziel
Bryan T Grenfell
A mechanistic spatio-temporal framework for modelling individual-to-individual transmission-With an application to the 2014-2015 West Africa Ebola outbreak.
PLoS Computational Biology
title A mechanistic spatio-temporal framework for modelling individual-to-individual transmission-With an application to the 2014-2015 West Africa Ebola outbreak.
title_full A mechanistic spatio-temporal framework for modelling individual-to-individual transmission-With an application to the 2014-2015 West Africa Ebola outbreak.
title_fullStr A mechanistic spatio-temporal framework for modelling individual-to-individual transmission-With an application to the 2014-2015 West Africa Ebola outbreak.
title_full_unstemmed A mechanistic spatio-temporal framework for modelling individual-to-individual transmission-With an application to the 2014-2015 West Africa Ebola outbreak.
title_short A mechanistic spatio-temporal framework for modelling individual-to-individual transmission-With an application to the 2014-2015 West Africa Ebola outbreak.
title_sort mechanistic spatio temporal framework for modelling individual to individual transmission with an application to the 2014 2015 west africa ebola outbreak
url https://doi.org/10.1371/journal.pcbi.1005798
work_keys_str_mv AT maxsylau amechanisticspatiotemporalframeworkformodellingindividualtoindividualtransmissionwithanapplicationtothe20142015westafricaebolaoutbreak
AT maxsylau amechanisticspatiotemporalframeworkformodellingindividualtoindividualtransmissionwithanapplicationtothe20142015westafricaebolaoutbreak
AT gavinjgibson amechanisticspatiotemporalframeworkformodellingindividualtoindividualtransmissionwithanapplicationtothe20142015westafricaebolaoutbreak
AT holaadrakey amechanisticspatiotemporalframeworkformodellingindividualtoindividualtransmissionwithanapplicationtothe20142015westafricaebolaoutbreak
AT amandamcclelland amechanisticspatiotemporalframeworkformodellingindividualtoindividualtransmissionwithanapplicationtothe20142015westafricaebolaoutbreak
AT stevenriley amechanisticspatiotemporalframeworkformodellingindividualtoindividualtransmissionwithanapplicationtothe20142015westafricaebolaoutbreak
AT jonzelner amechanisticspatiotemporalframeworkformodellingindividualtoindividualtransmissionwithanapplicationtothe20142015westafricaebolaoutbreak
AT georgestreftaris amechanisticspatiotemporalframeworkformodellingindividualtoindividualtransmissionwithanapplicationtothe20142015westafricaebolaoutbreak
AT sebastianfunk amechanisticspatiotemporalframeworkformodellingindividualtoindividualtransmissionwithanapplicationtothe20142015westafricaebolaoutbreak
AT jessicametcalf amechanisticspatiotemporalframeworkformodellingindividualtoindividualtransmissionwithanapplicationtothe20142015westafricaebolaoutbreak
AT benjaminddalziel amechanisticspatiotemporalframeworkformodellingindividualtoindividualtransmissionwithanapplicationtothe20142015westafricaebolaoutbreak
AT bryantgrenfell amechanisticspatiotemporalframeworkformodellingindividualtoindividualtransmissionwithanapplicationtothe20142015westafricaebolaoutbreak
AT maxsylau mechanisticspatiotemporalframeworkformodellingindividualtoindividualtransmissionwithanapplicationtothe20142015westafricaebolaoutbreak
AT maxsylau mechanisticspatiotemporalframeworkformodellingindividualtoindividualtransmissionwithanapplicationtothe20142015westafricaebolaoutbreak
AT gavinjgibson mechanisticspatiotemporalframeworkformodellingindividualtoindividualtransmissionwithanapplicationtothe20142015westafricaebolaoutbreak
AT holaadrakey mechanisticspatiotemporalframeworkformodellingindividualtoindividualtransmissionwithanapplicationtothe20142015westafricaebolaoutbreak
AT amandamcclelland mechanisticspatiotemporalframeworkformodellingindividualtoindividualtransmissionwithanapplicationtothe20142015westafricaebolaoutbreak
AT stevenriley mechanisticspatiotemporalframeworkformodellingindividualtoindividualtransmissionwithanapplicationtothe20142015westafricaebolaoutbreak
AT jonzelner mechanisticspatiotemporalframeworkformodellingindividualtoindividualtransmissionwithanapplicationtothe20142015westafricaebolaoutbreak
AT georgestreftaris mechanisticspatiotemporalframeworkformodellingindividualtoindividualtransmissionwithanapplicationtothe20142015westafricaebolaoutbreak
AT sebastianfunk mechanisticspatiotemporalframeworkformodellingindividualtoindividualtransmissionwithanapplicationtothe20142015westafricaebolaoutbreak
AT jessicametcalf mechanisticspatiotemporalframeworkformodellingindividualtoindividualtransmissionwithanapplicationtothe20142015westafricaebolaoutbreak
AT benjaminddalziel mechanisticspatiotemporalframeworkformodellingindividualtoindividualtransmissionwithanapplicationtothe20142015westafricaebolaoutbreak
AT bryantgrenfell mechanisticspatiotemporalframeworkformodellingindividualtoindividualtransmissionwithanapplicationtothe20142015westafricaebolaoutbreak