Geodesic motion near self-gravitating scalar field configurations
We study the geodesics motion of neutral test particles in the static spherically symmetric spacetimes of black holes and naked singularities supported by a selfgravitating real scalar field. The scalar field is supposed to model dark matter surrounding some strongly gravitating object such as the c...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Peoples’ Friendship University of Russia (RUDN University)
2019-12-01
|
Series: | Discrete and Continuous Models and Applied Computational Science |
Subjects: | |
Online Access: | http://journals.rudn.ru/miph/article/viewFile/22702/17709 |
_version_ | 1811340541339631616 |
---|---|
author | Ivan M. Potashov Julia V. Tchemarina Alexander N. Tsirulev |
author_facet | Ivan M. Potashov Julia V. Tchemarina Alexander N. Tsirulev |
author_sort | Ivan M. Potashov |
collection | DOAJ |
description | We study the geodesics motion of neutral test particles in the static spherically symmetric spacetimes of black holes and naked singularities supported by a selfgravitating real scalar field. The scalar field is supposed to model dark matter surrounding some strongly gravitating object such as the centre of our Galaxy. The behaviour of timelike and null geodesics very close to the centre of such a configuration crucially depends on the type of spacetime. It turns out that a scalar field black hole, analogously to a Schwarzschild black hole, has the innermost stable circular orbit and the (unstable) photon sphere, but their radii are always less than the corresponding ones for the Schwarzschild black hole of the same mass; moreover, these radii can be arbitrarily small. In contrast, a scalar field naked singularity has neither the innermost stable circular orbit nor the photon sphere. Instead, such a configuration has a spherical shell of test particles surrounding its origin and remaining in quasistatic equilibrium all the time. We also show that the characteristic properties of null geodesics near the centres of a scalar field naked singularity and a scalar field black hole of the same mass are qualitatively different. |
first_indexed | 2024-04-13T18:43:30Z |
format | Article |
id | doaj.art-560719cb283c420694204c5515fa09d0 |
institution | Directory Open Access Journal |
issn | 2658-4670 2658-7149 |
language | English |
last_indexed | 2024-04-13T18:43:30Z |
publishDate | 2019-12-01 |
publisher | Peoples’ Friendship University of Russia (RUDN University) |
record_format | Article |
series | Discrete and Continuous Models and Applied Computational Science |
spelling | doaj.art-560719cb283c420694204c5515fa09d02022-12-22T02:34:39ZengPeoples’ Friendship University of Russia (RUDN University)Discrete and Continuous Models and Applied Computational Science2658-46702658-71492019-12-0127323124110.22363/2658-4670-2019-27-3-231-24118397Geodesic motion near self-gravitating scalar field configurationsIvan M. Potashov0Julia V. Tchemarina1Alexander N. Tsirulev2Tver State UniversityTver State UniversityTver State UniversityWe study the geodesics motion of neutral test particles in the static spherically symmetric spacetimes of black holes and naked singularities supported by a selfgravitating real scalar field. The scalar field is supposed to model dark matter surrounding some strongly gravitating object such as the centre of our Galaxy. The behaviour of timelike and null geodesics very close to the centre of such a configuration crucially depends on the type of spacetime. It turns out that a scalar field black hole, analogously to a Schwarzschild black hole, has the innermost stable circular orbit and the (unstable) photon sphere, but their radii are always less than the corresponding ones for the Schwarzschild black hole of the same mass; moreover, these radii can be arbitrarily small. In contrast, a scalar field naked singularity has neither the innermost stable circular orbit nor the photon sphere. Instead, such a configuration has a spherical shell of test particles surrounding its origin and remaining in quasistatic equilibrium all the time. We also show that the characteristic properties of null geodesics near the centres of a scalar field naked singularity and a scalar field black hole of the same mass are qualitatively different.http://journals.rudn.ru/miph/article/viewFile/22702/17709geodesicblack holenaked singularityscalar field |
spellingShingle | Ivan M. Potashov Julia V. Tchemarina Alexander N. Tsirulev Geodesic motion near self-gravitating scalar field configurations Discrete and Continuous Models and Applied Computational Science geodesic black hole naked singularity scalar field |
title | Geodesic motion near self-gravitating scalar field configurations |
title_full | Geodesic motion near self-gravitating scalar field configurations |
title_fullStr | Geodesic motion near self-gravitating scalar field configurations |
title_full_unstemmed | Geodesic motion near self-gravitating scalar field configurations |
title_short | Geodesic motion near self-gravitating scalar field configurations |
title_sort | geodesic motion near self gravitating scalar field configurations |
topic | geodesic black hole naked singularity scalar field |
url | http://journals.rudn.ru/miph/article/viewFile/22702/17709 |
work_keys_str_mv | AT ivanmpotashov geodesicmotionnearselfgravitatingscalarfieldconfigurations AT juliavtchemarina geodesicmotionnearselfgravitatingscalarfieldconfigurations AT alexanderntsirulev geodesicmotionnearselfgravitatingscalarfieldconfigurations |