Ameliorative effects on osteoporosis of small extracellular vesicles derived from bone marrow mesenchymal stem cells

Objective·To investigate the effects of small extracellular vesicles (sEVs) derived from human bone marrow mesenchymal stem cells (BMSCs) on the regulation of osteoclast differentiation and macrophage polarization in mice, and mouse model of osteoporosis.Methods·BMSCs were cultured and sEVs were iso...

Full description

Bibliographic Details
Main Authors: LI Xuran, TAO Shicong, GUO Shangchun
Format: Article
Language:zho
Published: Editorial Office of Journal of Shanghai Jiao Tong University (Medical Science) 2023-04-01
Series:Shanghai Jiaotong Daxue xuebao. Yixue ban
Subjects:
Online Access:https://xuebao.shsmu.edu.cn/article/2023/1674-8115/1674-8115-2023-43-4-406.shtml
_version_ 1797385277441835008
author LI Xuran
TAO Shicong
GUO Shangchun
author_facet LI Xuran
TAO Shicong
GUO Shangchun
author_sort LI Xuran
collection DOAJ
description Objective·To investigate the effects of small extracellular vesicles (sEVs) derived from human bone marrow mesenchymal stem cells (BMSCs) on the regulation of osteoclast differentiation and macrophage polarization in mice, and mouse model of osteoporosis.Methods·BMSCs were cultured and sEVs were isolated through differential centrifugation. The isolated sEVs were identified by transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA). RAW264.7 cells were cultured and stimulated with macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-κB ligand (RANKL) to differentiate the cells into osteoclasts. Tartrate-resistant acid phosphatase (TRAP) staining and phalloidin staining were performed to assess the effect of sEVs on osteoclast formation. The expression levels of osteoclast marker genes, i.e., cAMP-response element binding protein (CREB), cathepsin K (CTSK), and Jun proto-oncogene (c-Jun) were examined by real-time quantitative PCR. To polarize RAW264.7 cells to M1 phenotype, they were cultured with lipopolysaccharides; to polarize them to M2 phenotype, they were cultured with interleukin-4 (IL-4) and IL-13. Flow cytometry was performed to detect the effect of sEVs on macrophage polarization. Micro-computed tomography (micro-CT) and TRAP staining were performed to investigate the effect of sEVs on the bone tissues of lumbar vertebrae in osteoporosis mouse models.Results·TEM and NTA demonstrated that the isolated sEVs had a typical globular structure with a diameter ranging from 30‒150 nm. TRAP staining and phalloidin staining showed that BMSC-derived sEVs inhibited the fusion of RAW264.7 cells to form osteoblasts. PCR revealed that sEVs could decrease the expression of CREB, CTSK, and c-Jun (all P<0.05). Flow cytometry analysis indicated that BMSC-derived sEVs inhibited RAW264.7 macrophages polarization to M1 phenotype and induced RAW264.7 macrophages polarization to M2 phenotype. Micro-CT indicated that the number of trabeculae and the bone volume fraction of lumbar vertebrae were significantly higher in the sEV-intervened group than those in the control group (both P<0.05). TRAP staining revealed a reduction of osteoclast number in the lumbar vertebrae after intervention with sEVs.Conclusion·The sEVs from human BMSCs can delay bone loss in osteoporosis mice, which may be related to its effects of inhibiting osteoclast differentiation and promoting the polarization of M2 type macrophages.
first_indexed 2024-03-08T21:52:29Z
format Article
id doaj.art-56072696624c4be499b3eda81947cceb
institution Directory Open Access Journal
issn 1674-8115
language zho
last_indexed 2024-03-08T21:52:29Z
publishDate 2023-04-01
publisher Editorial Office of Journal of Shanghai Jiao Tong University (Medical Science)
record_format Article
series Shanghai Jiaotong Daxue xuebao. Yixue ban
spelling doaj.art-56072696624c4be499b3eda81947cceb2023-12-20T06:18:37ZzhoEditorial Office of Journal of Shanghai Jiao Tong University (Medical Science)Shanghai Jiaotong Daxue xuebao. Yixue ban1674-81152023-04-0143440641610.3969/j.issn.1674-8115.2023.04.0021674-8115(2023)04-0406-11Ameliorative effects on osteoporosis of small extracellular vesicles derived from bone marrow mesenchymal stem cellsLI Xuran0TAO Shicong1GUO Shangchun2Department of Orthopedic Surgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200233, ChinaDepartment of Orthopedic Surgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200233, ChinaDepartment of Orthopedic Surgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200233, ChinaObjective·To investigate the effects of small extracellular vesicles (sEVs) derived from human bone marrow mesenchymal stem cells (BMSCs) on the regulation of osteoclast differentiation and macrophage polarization in mice, and mouse model of osteoporosis.Methods·BMSCs were cultured and sEVs were isolated through differential centrifugation. The isolated sEVs were identified by transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA). RAW264.7 cells were cultured and stimulated with macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-κB ligand (RANKL) to differentiate the cells into osteoclasts. Tartrate-resistant acid phosphatase (TRAP) staining and phalloidin staining were performed to assess the effect of sEVs on osteoclast formation. The expression levels of osteoclast marker genes, i.e., cAMP-response element binding protein (CREB), cathepsin K (CTSK), and Jun proto-oncogene (c-Jun) were examined by real-time quantitative PCR. To polarize RAW264.7 cells to M1 phenotype, they were cultured with lipopolysaccharides; to polarize them to M2 phenotype, they were cultured with interleukin-4 (IL-4) and IL-13. Flow cytometry was performed to detect the effect of sEVs on macrophage polarization. Micro-computed tomography (micro-CT) and TRAP staining were performed to investigate the effect of sEVs on the bone tissues of lumbar vertebrae in osteoporosis mouse models.Results·TEM and NTA demonstrated that the isolated sEVs had a typical globular structure with a diameter ranging from 30‒150 nm. TRAP staining and phalloidin staining showed that BMSC-derived sEVs inhibited the fusion of RAW264.7 cells to form osteoblasts. PCR revealed that sEVs could decrease the expression of CREB, CTSK, and c-Jun (all P<0.05). Flow cytometry analysis indicated that BMSC-derived sEVs inhibited RAW264.7 macrophages polarization to M1 phenotype and induced RAW264.7 macrophages polarization to M2 phenotype. Micro-CT indicated that the number of trabeculae and the bone volume fraction of lumbar vertebrae were significantly higher in the sEV-intervened group than those in the control group (both P<0.05). TRAP staining revealed a reduction of osteoclast number in the lumbar vertebrae after intervention with sEVs.Conclusion·The sEVs from human BMSCs can delay bone loss in osteoporosis mice, which may be related to its effects of inhibiting osteoclast differentiation and promoting the polarization of M2 type macrophages.https://xuebao.shsmu.edu.cn/article/2023/1674-8115/1674-8115-2023-43-4-406.shtmlbone marrow mesenchymal stem cell (bmsc)small extracellular vesicle (sev)osteoporosisosteoclastmacrophage polarization
spellingShingle LI Xuran
TAO Shicong
GUO Shangchun
Ameliorative effects on osteoporosis of small extracellular vesicles derived from bone marrow mesenchymal stem cells
Shanghai Jiaotong Daxue xuebao. Yixue ban
bone marrow mesenchymal stem cell (bmsc)
small extracellular vesicle (sev)
osteoporosis
osteoclast
macrophage polarization
title Ameliorative effects on osteoporosis of small extracellular vesicles derived from bone marrow mesenchymal stem cells
title_full Ameliorative effects on osteoporosis of small extracellular vesicles derived from bone marrow mesenchymal stem cells
title_fullStr Ameliorative effects on osteoporosis of small extracellular vesicles derived from bone marrow mesenchymal stem cells
title_full_unstemmed Ameliorative effects on osteoporosis of small extracellular vesicles derived from bone marrow mesenchymal stem cells
title_short Ameliorative effects on osteoporosis of small extracellular vesicles derived from bone marrow mesenchymal stem cells
title_sort ameliorative effects on osteoporosis of small extracellular vesicles derived from bone marrow mesenchymal stem cells
topic bone marrow mesenchymal stem cell (bmsc)
small extracellular vesicle (sev)
osteoporosis
osteoclast
macrophage polarization
url https://xuebao.shsmu.edu.cn/article/2023/1674-8115/1674-8115-2023-43-4-406.shtml
work_keys_str_mv AT lixuran ameliorativeeffectsonosteoporosisofsmallextracellularvesiclesderivedfrombonemarrowmesenchymalstemcells
AT taoshicong ameliorativeeffectsonosteoporosisofsmallextracellularvesiclesderivedfrombonemarrowmesenchymalstemcells
AT guoshangchun ameliorativeeffectsonosteoporosisofsmallextracellularvesiclesderivedfrombonemarrowmesenchymalstemcells