Optical crop sensor for variable-rate nitrogen fertilization in corn: i - plant nutrition and dry matter production
Variable-rate nitrogen fertilization (VRF) based on optical spectrometry sensors of crops is a technological innovation capable of improving the nutrient use efficiency (NUE) and mitigate environmental impacts. However, studies addressing fertilization based on crop sensors are still scarce in Brazi...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Sociedade Brasileira de Ciência do Solo
2013-10-01
|
Series: | Revista Brasileira de Ciência do Solo |
Subjects: | |
Online Access: | http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832013000500018&lng=en&tlng=en |
_version_ | 1818564649613787136 |
---|---|
author | Jardes Bragagnolo Telmo Jorge Carneiro Amado Rodrigo da Silveira Nicoloso Joerg Jasper Junior Kunz Tiago de Gregori Teixeira |
author_facet | Jardes Bragagnolo Telmo Jorge Carneiro Amado Rodrigo da Silveira Nicoloso Joerg Jasper Junior Kunz Tiago de Gregori Teixeira |
author_sort | Jardes Bragagnolo |
collection | DOAJ |
description | Variable-rate nitrogen fertilization (VRF) based on optical spectrometry sensors of crops is a technological innovation capable of improving the nutrient use efficiency (NUE) and mitigate environmental impacts. However, studies addressing fertilization based on crop sensors are still scarce in Brazilian agriculture. This study aims to evaluate the efficiency of an optical crop sensor to assess the nutritional status of corn and compare VRF with the standard strategy of traditional single-rate N fertilization (TSF) used by farmers. With this purpose, three experiments were conducted at different locations in Southern Brazil, in the growing seasons 2008/09 and 2010/11. The following crop properties were evaluated: above-ground dry matter production, nitrogen (N) content, N uptake, relative chlorophyll content (SPAD) reading, and a vegetation index measured by the optical sensor N-Sensor® ALS. The plants were evaluated in the stages V4, V6, V8, V10, V12 and at corn flowering. The experiments had a completely randomized design at three different sites that were analyzed separately. The vegetation index was directly related to above-ground dry matter production (R² = 0.91; p<0.0001), total N uptake (R² = 0.87; p<0.0001) and SPAD reading (R² = 0.63; p<0.0001) and inversely related to plant N content (R² = 0.53; p<0.0001). The efficiency of VRF for plant nutrition was influenced by the specific climatic conditions of each site. Therefore, the efficiency of the VRF strategy was similar to that of the standard farmer fertilizer strategy at sites 1 and 2. However, at site 3 where the climatic conditions were favorable for corn growth, the use of optical sensors to determine VRF resulted in a 12 % increase in N plant uptake in relation to the standard fertilization, indicating the potential of this technology to improve NUE. |
first_indexed | 2024-12-14T01:31:30Z |
format | Article |
id | doaj.art-5622eed68d624978a6dc7196ebd585a9 |
institution | Directory Open Access Journal |
issn | 1806-9657 |
language | English |
last_indexed | 2024-12-14T01:31:30Z |
publishDate | 2013-10-01 |
publisher | Sociedade Brasileira de Ciência do Solo |
record_format | Article |
series | Revista Brasileira de Ciência do Solo |
spelling | doaj.art-5622eed68d624978a6dc7196ebd585a92022-12-21T23:22:02ZengSociedade Brasileira de Ciência do SoloRevista Brasileira de Ciência do Solo1806-96572013-10-013751288129810.1590/S0100-06832013000500018S0100-06832013000500018Optical crop sensor for variable-rate nitrogen fertilization in corn: i - plant nutrition and dry matter productionJardes Bragagnolo0Telmo Jorge Carneiro Amado1Rodrigo da Silveira Nicoloso2Joerg Jasper3Junior Kunz4Tiago de Gregori Teixeira5Universidade Federal de Santa MariaUniversidade Federal de Santa MariaEmbrapaYara InternationalUniversidade Federal de Santa MariaUniversidade Federal de Santa MariaVariable-rate nitrogen fertilization (VRF) based on optical spectrometry sensors of crops is a technological innovation capable of improving the nutrient use efficiency (NUE) and mitigate environmental impacts. However, studies addressing fertilization based on crop sensors are still scarce in Brazilian agriculture. This study aims to evaluate the efficiency of an optical crop sensor to assess the nutritional status of corn and compare VRF with the standard strategy of traditional single-rate N fertilization (TSF) used by farmers. With this purpose, three experiments were conducted at different locations in Southern Brazil, in the growing seasons 2008/09 and 2010/11. The following crop properties were evaluated: above-ground dry matter production, nitrogen (N) content, N uptake, relative chlorophyll content (SPAD) reading, and a vegetation index measured by the optical sensor N-Sensor® ALS. The plants were evaluated in the stages V4, V6, V8, V10, V12 and at corn flowering. The experiments had a completely randomized design at three different sites that were analyzed separately. The vegetation index was directly related to above-ground dry matter production (R² = 0.91; p<0.0001), total N uptake (R² = 0.87; p<0.0001) and SPAD reading (R² = 0.63; p<0.0001) and inversely related to plant N content (R² = 0.53; p<0.0001). The efficiency of VRF for plant nutrition was influenced by the specific climatic conditions of each site. Therefore, the efficiency of the VRF strategy was similar to that of the standard farmer fertilizer strategy at sites 1 and 2. However, at site 3 where the climatic conditions were favorable for corn growth, the use of optical sensors to determine VRF resulted in a 12 % increase in N plant uptake in relation to the standard fertilization, indicating the potential of this technology to improve NUE.http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832013000500018&lng=en&tlng=enmanejo sítio-específicoespectrometria ópticaagricultura de precisãofertilidade do solo |
spellingShingle | Jardes Bragagnolo Telmo Jorge Carneiro Amado Rodrigo da Silveira Nicoloso Joerg Jasper Junior Kunz Tiago de Gregori Teixeira Optical crop sensor for variable-rate nitrogen fertilization in corn: i - plant nutrition and dry matter production Revista Brasileira de Ciência do Solo manejo sítio-específico espectrometria óptica agricultura de precisão fertilidade do solo |
title | Optical crop sensor for variable-rate nitrogen fertilization in corn: i - plant nutrition and dry matter production |
title_full | Optical crop sensor for variable-rate nitrogen fertilization in corn: i - plant nutrition and dry matter production |
title_fullStr | Optical crop sensor for variable-rate nitrogen fertilization in corn: i - plant nutrition and dry matter production |
title_full_unstemmed | Optical crop sensor for variable-rate nitrogen fertilization in corn: i - plant nutrition and dry matter production |
title_short | Optical crop sensor for variable-rate nitrogen fertilization in corn: i - plant nutrition and dry matter production |
title_sort | optical crop sensor for variable rate nitrogen fertilization in corn i plant nutrition and dry matter production |
topic | manejo sítio-específico espectrometria óptica agricultura de precisão fertilidade do solo |
url | http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832013000500018&lng=en&tlng=en |
work_keys_str_mv | AT jardesbragagnolo opticalcropsensorforvariableratenitrogenfertilizationincorniplantnutritionanddrymatterproduction AT telmojorgecarneiroamado opticalcropsensorforvariableratenitrogenfertilizationincorniplantnutritionanddrymatterproduction AT rodrigodasilveiranicoloso opticalcropsensorforvariableratenitrogenfertilizationincorniplantnutritionanddrymatterproduction AT joergjasper opticalcropsensorforvariableratenitrogenfertilizationincorniplantnutritionanddrymatterproduction AT juniorkunz opticalcropsensorforvariableratenitrogenfertilizationincorniplantnutritionanddrymatterproduction AT tiagodegregoriteixeira opticalcropsensorforvariableratenitrogenfertilizationincorniplantnutritionanddrymatterproduction |