Therapeutic role of Sargassum vulgare with nano zinc oxide against gamma-radiation-induced oxidative stress in rats

Aim: For more effective therapy and accurate diagnostic instruments and devices, it is crucial to develop novel nanomaterials with excellent biological performance and low toxicity. Due to their outstanding biocompatibility, feasibility, little environmental impact, affordability, and low toxicity,...

Full description

Bibliographic Details
Main Authors: Mohamed Ebrahim Abdel-Alim, H R Moussa, Fathy A El-Saied, Manar Obada, Manar A Hashim, Nesrein Saad Salim
Format: Article
Language:English
Published: Wolters Kluwer Medknow Publications 2023-01-01
Series:International Journal of Environmental Health Engineering
Subjects:
Online Access:http://www.ijehe.org/article.asp?issn=2277-9183;year=2023;volume=12;issue=1;spage=22;epage=22;aulast=Abdel-Alim
Description
Summary:Aim: For more effective therapy and accurate diagnostic instruments and devices, it is crucial to develop novel nanomaterials with excellent biological performance and low toxicity. Due to their outstanding biocompatibility, feasibility, little environmental impact, affordability, and low toxicity, ZnO nanoparticles (NPs) have emerged as one of the most widely used metal oxide NPs in biological applications. One of the many multifunctional inorganic NPs is ZnO, which has been produced using an easy, environmental-friendly process. ZnO NPs have emerged a promising potential in biomedicine, especially in the fields of anticancer and antibacterial fields, which are involved with their potent ability to trigger excess reactive oxygen species production, release zinc ions, and induce cell apoptosis. Materials and Methods: Several methods were used to explore the physicochemical properties of ZnO NPs. By using diffuse reflectance spectroscopy, energy-dispersive X-ray, X-ray diffraction analysis, Fourier transform infrared spectroscopies, and scanning electron microscope (SEM), a sample's chemical and elemental composition, crystalline structure, optical properties, and surface appearance have all been studied. Ultraviolet-visible spectroscopy is the main technique for characterizing ZnO NPs. Results: A heterogeneous surface form for extremely pure, completely crystalline, and photoactive ZnO NPs was produced. Radiation affects living cells and has an effect on all biological processes in the human body, causing living cells to be damaged. As a result, there is a great deal of interest in developing antioxidant bio-drugs based on Sargassum vulgare and ZnO NPs to protect radiotherapy patients and specialists from the dangers of γ-radiation. A major genus of brown marine algae, S. vulgare, is found along the Mediterranean and red sea coasts and is a member of the Sargassaceae family. S. vulgare methanolic extract (4 g/kg b.wt) and ZnO NPs (10 μM) were given intraperitoneally twice weekly for 6 weeks to rats that had previously received a single dose of γ-radiation (6 Gy) after 1 week of the experiment. There were five groups of rats (15 rats each). Conclusions: This cosmopolitan seaweed is known for valuable nutraceutical benefits but has not yet been researched in this regard. As a result, the current study was designed to assess the feasibility and in vivo potential activity of S. vulgare methanolic extract as a functional food supplement with ZnO NPs in alleviating γ-radiation-associated oxidative damage and toxic symptoms. Based on the findings, S. vulgare with ZnO NPs could be used as a therapeutic medication during radiotherapy to reduce the oxidative stress, toxicity, and damage caused by γ-radiation.
ISSN:2277-9183