Explainable Artificial Intelligence for Intrusion Detection System

Intrusion detection systems are widely utilized in the cyber security field, to prevent and mitigate threats. Intrusion detection systems (IDS) help to keep threats and vulnerabilities out of computer networks. To develop effective intrusion detection systems, a range of machine learning methods are...

Full description

Bibliographic Details
Main Authors: Shruti Patil, Vijayakumar Varadarajan, Siddiqui Mohd Mazhar, Abdulwodood Sahibzada, Nihal Ahmed, Onkar Sinha, Satish Kumar, Kailash Shaw, Ketan Kotecha
Format: Article
Language:English
Published: MDPI AG 2022-09-01
Series:Electronics
Subjects:
Online Access:https://www.mdpi.com/2079-9292/11/19/3079
Description
Summary:Intrusion detection systems are widely utilized in the cyber security field, to prevent and mitigate threats. Intrusion detection systems (IDS) help to keep threats and vulnerabilities out of computer networks. To develop effective intrusion detection systems, a range of machine learning methods are available. Machine learning ensemble methods have a well-proven track record when it comes to learning. Using ensemble methods of machine learning, this paper proposes an innovative intrusion detection system. To improve classification accuracy and eliminate false positives, features from the CICIDS-2017 dataset were chosen. This paper proposes an intrusion detection system using machine learning algorithms such as decision trees, random forests, and SVM (IDS). After training these models, an ensemble technique voting classifier was added and achieved an accuracy of 96.25%. Furthermore, the proposed model also incorporates the XAI algorithm LIME for better explainability and understanding of the black-box approach to reliable intrusion detection. Our experimental results confirmed that XAI LIME is more explanation-friendly and more responsive.
ISSN:2079-9292