Accuracy and Efficiency of Right-Lobe Graft Weight Estimation Using Deep-Learning-Assisted CT Volumetry for Living-Donor Liver Transplantation

CT volumetry (CTV) has been widely used for pre-operative graft weight (GW) estimation in living-donor liver transplantation (LDLT), and the use of a deep-learning algorithm (DLA) may further improve its efficiency. However, its accuracy has not been well determined. To evaluate the efficiency and a...

Full description

Bibliographic Details
Main Authors: Rohee Park, Seungsoo Lee, Yusub Sung, Jeeseok Yoon, Heung-Il Suk, Hyoungjung Kim, Sanghyun Choi
Format: Article
Language:English
Published: MDPI AG 2022-02-01
Series:Diagnostics
Subjects:
Online Access:https://www.mdpi.com/2075-4418/12/3/590
Description
Summary:CT volumetry (CTV) has been widely used for pre-operative graft weight (GW) estimation in living-donor liver transplantation (LDLT), and the use of a deep-learning algorithm (DLA) may further improve its efficiency. However, its accuracy has not been well determined. To evaluate the efficiency and accuracy of DLA-assisted CTV in GW estimation, we performed a retrospective study including 581 consecutive LDLT donors who donated a right-lobe graft. Right-lobe graft volume (GV) was measured on CT using the software implemented with the DLA for automated liver segmentation. In the development group (<i>n</i> = 207), a volume-to-weight conversion formula was constructed by linear regression analysis between the CTV-measured GV and the intraoperative GW. In the validation group (<i>n</i> = 374), the agreement between the estimated and measured GWs was assessed using the Bland–Altman 95% limit-of-agreement (LOA). The mean process time for GV measurement was 1.8 ± 0.6 min (range, 1.3–8.0 min). In the validation group, the GW was estimated using the volume-to-weight conversion formula (estimated GW [g] = 206.3 + 0.653 × CTV-measured GV [mL]), and the Bland–Altman 95% LOA between the estimated and measured GWs was −1.7% ± 17.1%. The DLA-assisted CT volumetry allows for time-efficient and accurate estimation of GW in LDLT.
ISSN:2075-4418