Simultaneous proximinality in \(L^{\infty}(\mu,X)\)
Let \(X\) be a Banach space and \(G\) be a closed subspace of \(X\). Let us denote by \(L^{\infty}\left( \mu,X\right) \) the Banach space of all \(X\)-valued essentially bounded functions on a \(\sigma\)-finite complete measure space \(\left( \Omega,\Sigma,\mu\right) .\) In this paper we show that i...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Publishing House of the Romanian Academy
2013-08-01
|
Series: | Journal of Numerical Analysis and Approximation Theory |
Subjects: | |
Online Access: | https://ictp.acad.ro/jnaat/journal/article/view/984 |
Summary: | Let \(X\) be a Banach space and \(G\) be a closed subspace of \(X\). Let us denote by \(L^{\infty}\left( \mu,X\right) \) the Banach space of all \(X\)-valued essentially bounded functions on a \(\sigma\)-finite complete measure space \(\left( \Omega,\Sigma,\mu\right) .\) In this paper we show that if \(G\) is separable, then \(L^{\infty}\left( \mu,G\right) \) is simultaneously proximinal in \(L^{\infty}\left( \mu,X\right) \) if and only if \(G\) is simultaneously proximinal in \(X.\) |
---|---|
ISSN: | 2457-6794 2501-059X |