Influence of Service Conditions and Mix Design on the Physical–Mechanical Properties of Roller-Compacted Concrete for Pavement
This research focuses on the behavior of roller-compacted concrete (RCC) used in pavements, which are prone to deterioration affecting their performance. These deteriorations result from various causes, including traffic load, errors during construction, mix design, and ambient conditions. Among the...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2024-01-01
|
Series: | Materials |
Subjects: | |
Online Access: | https://www.mdpi.com/1996-1944/17/3/552 |
_version_ | 1797318518198239232 |
---|---|
author | Julián Pulecio-Díaz Miguel Sol-Sánchez Fernando Moreno-Navarro |
author_facet | Julián Pulecio-Díaz Miguel Sol-Sánchez Fernando Moreno-Navarro |
author_sort | Julián Pulecio-Díaz |
collection | DOAJ |
description | This research focuses on the behavior of roller-compacted concrete (RCC) used in pavements, which are prone to deterioration affecting their performance. These deteriorations result from various causes, including traffic load, errors during construction, mix design, and ambient conditions. Among these, ambient conditions could lead to a marked variable impact on material behavior and durability depending on the conditions associated with each region. Accordingly, this study aims to deepen the understanding of the effect, which a broader range of ambient conditions and different mix designs have on the physical and mechanical properties of RCC. Measurements such as the amount of water vapor per kilogram of air were used to apply the findings comprehensively. The RCC analysis encompassed experimentation with different compositions, altering the cement water ratio amount, and adding a superplasticizer. The impact of curing on the materials was evaluated before subjecting them to various humidity and temperature conditions. Laboratory tests were conducted to measure performance, including moisture, shrinkage, compressive strength, and the progression of flexural fracture resistance over curing periods of up to 90 days. The results revealed a logarithmic correlation between shrinkage and ambient humidity, which is the most determining factor in performance. Mix optimization through increased cement and reduced water enhanced the tensile strength of the material. Furthermore, the curing process was confirmed to increase resistance to shrinkage, especially in the long term, establishing it as a crucial element for the structural stability of RCC, which is relatively insensitive to variations in ambient conditions. |
first_indexed | 2024-03-08T03:53:37Z |
format | Article |
id | doaj.art-562f715e0b0442758372ad03da10a375 |
institution | Directory Open Access Journal |
issn | 1996-1944 |
language | English |
last_indexed | 2024-03-08T03:53:37Z |
publishDate | 2024-01-01 |
publisher | MDPI AG |
record_format | Article |
series | Materials |
spelling | doaj.art-562f715e0b0442758372ad03da10a3752024-02-09T15:17:04ZengMDPI AGMaterials1996-19442024-01-0117355210.3390/ma17030552Influence of Service Conditions and Mix Design on the Physical–Mechanical Properties of Roller-Compacted Concrete for PavementJulián Pulecio-Díaz0Miguel Sol-Sánchez1Fernando Moreno-Navarro2Faculty of Engineering, Universidad Cooperativa de Colombia, Ibague 730006, ColombiaLaboratory of Construction Engineering, University of Granada, 18071 Granada, SpainLaboratory of Construction Engineering, University of Granada, 18071 Granada, SpainThis research focuses on the behavior of roller-compacted concrete (RCC) used in pavements, which are prone to deterioration affecting their performance. These deteriorations result from various causes, including traffic load, errors during construction, mix design, and ambient conditions. Among these, ambient conditions could lead to a marked variable impact on material behavior and durability depending on the conditions associated with each region. Accordingly, this study aims to deepen the understanding of the effect, which a broader range of ambient conditions and different mix designs have on the physical and mechanical properties of RCC. Measurements such as the amount of water vapor per kilogram of air were used to apply the findings comprehensively. The RCC analysis encompassed experimentation with different compositions, altering the cement water ratio amount, and adding a superplasticizer. The impact of curing on the materials was evaluated before subjecting them to various humidity and temperature conditions. Laboratory tests were conducted to measure performance, including moisture, shrinkage, compressive strength, and the progression of flexural fracture resistance over curing periods of up to 90 days. The results revealed a logarithmic correlation between shrinkage and ambient humidity, which is the most determining factor in performance. Mix optimization through increased cement and reduced water enhanced the tensile strength of the material. Furthermore, the curing process was confirmed to increase resistance to shrinkage, especially in the long term, establishing it as a crucial element for the structural stability of RCC, which is relatively insensitive to variations in ambient conditions.https://www.mdpi.com/1996-1944/17/3/552physical–mechanical propertiesrelative humidityroller-compacted concretetemperature |
spellingShingle | Julián Pulecio-Díaz Miguel Sol-Sánchez Fernando Moreno-Navarro Influence of Service Conditions and Mix Design on the Physical–Mechanical Properties of Roller-Compacted Concrete for Pavement Materials physical–mechanical properties relative humidity roller-compacted concrete temperature |
title | Influence of Service Conditions and Mix Design on the Physical–Mechanical Properties of Roller-Compacted Concrete for Pavement |
title_full | Influence of Service Conditions and Mix Design on the Physical–Mechanical Properties of Roller-Compacted Concrete for Pavement |
title_fullStr | Influence of Service Conditions and Mix Design on the Physical–Mechanical Properties of Roller-Compacted Concrete for Pavement |
title_full_unstemmed | Influence of Service Conditions and Mix Design on the Physical–Mechanical Properties of Roller-Compacted Concrete for Pavement |
title_short | Influence of Service Conditions and Mix Design on the Physical–Mechanical Properties of Roller-Compacted Concrete for Pavement |
title_sort | influence of service conditions and mix design on the physical mechanical properties of roller compacted concrete for pavement |
topic | physical–mechanical properties relative humidity roller-compacted concrete temperature |
url | https://www.mdpi.com/1996-1944/17/3/552 |
work_keys_str_mv | AT julianpuleciodiaz influenceofserviceconditionsandmixdesignonthephysicalmechanicalpropertiesofrollercompactedconcreteforpavement AT miguelsolsanchez influenceofserviceconditionsandmixdesignonthephysicalmechanicalpropertiesofrollercompactedconcreteforpavement AT fernandomorenonavarro influenceofserviceconditionsandmixdesignonthephysicalmechanicalpropertiesofrollercompactedconcreteforpavement |