Existence, release, and antibacterial actions of silver nanoparticles on Ag–PIII TiO2 films with different nanotopographies

Jinhua Li, Yuqin Qiao, Hongqin Zhu, Fanhao Meng, Xuanyong Liu State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, People’s Republic of China Abstract: Nanotopographical TiO2 films...

Full description

Bibliographic Details
Main Authors: Li J, Qiao Y, Zhu H, Meng F, Liu X
Format: Article
Language:English
Published: Dove Medical Press 2014-07-01
Series:International Journal of Nanomedicine
Online Access:http://www.dovepress.com/existence-release-and-antibacterial-actions-of-silver-nanoparticles-on-peer-reviewed-article-IJN
Description
Summary:Jinhua Li, Yuqin Qiao, Hongqin Zhu, Fanhao Meng, Xuanyong Liu State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, People’s Republic of China Abstract: Nanotopographical TiO2 films (including nanorod, nanotip, and nanowire topographies) were successfully fabricated on the metallic Ti surface via hydrothermal treatment and then underwent Ag plasma immersion ion implantation to incorporate Ag with TiO2. The surface morphology, phase component, and chemical composition before and after Ag–PIII were characterized. In view of the potential clinical applications, both Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus were used to estimate their antimicrobial effect. The nanostructured TiO2 films on a Ti surface exhibit a better bacteriostatic effect on both microbes compared to the pristine Ti. The nanotopographies of the TiO2 films affect the nucleation, growth, and distribution of Ag nanoparticles in the films during Ag–PIII process. The Ag nanoparticles are completely embedded into the nanorod film while partially exposed out of the nanotip and nanowire films, which account for the significant differences in the release behaviors of Ag ions in vitro. However, no significant difference exists in their antimicrobial activity against both microbes. The antimicrobial actions of the Ag@TiO2 system described here consist of two methods – the contact-killing action and the release-killing action. Nevertheless, based on the observed results, the contact-killing action should be regarded as the main method to destroy microbes for all the Ag plasma-modified TiO2 nanofilms. This study provides insight to optimize the surface design of Ti-based implants to acquire more effective antimicrobial surfaces to meet clinical applications. Keywords: silver, nanoparticles, titania, nanostructure, antibacterial, plasma
ISSN:1178-2013