Application of chemical derivatization techniques combined with chemical ionization mass spectrometry to detect stabilized Criegee intermediates and peroxy radicals in the gas phase

<p>Short-lived highly reactive atmospheric species, such as organic peroxy radicals (<span class="inline-formula">RO<sub>2</sub></span>) and stabilized Criegee intermediates (SCIs), play an important role in controlling the oxidative removal and transformation...

Full description

Bibliographic Details
Main Authors: A. Zaytsev, M. Breitenlechner, A. Novelli, H. Fuchs, D. A. Knopf, J. H. Kroll, F. N. Keutsch
Format: Article
Language:English
Published: Copernicus Publications 2021-03-01
Series:Atmospheric Measurement Techniques
Online Access:https://amt.copernicus.org/articles/14/2501/2021/amt-14-2501-2021.pdf
_version_ 1818428398397030400
author A. Zaytsev
M. Breitenlechner
M. Breitenlechner
A. Novelli
H. Fuchs
D. A. Knopf
J. H. Kroll
F. N. Keutsch
F. N. Keutsch
F. N. Keutsch
author_facet A. Zaytsev
M. Breitenlechner
M. Breitenlechner
A. Novelli
H. Fuchs
D. A. Knopf
J. H. Kroll
F. N. Keutsch
F. N. Keutsch
F. N. Keutsch
author_sort A. Zaytsev
collection DOAJ
description <p>Short-lived highly reactive atmospheric species, such as organic peroxy radicals (<span class="inline-formula">RO<sub>2</sub></span>) and stabilized Criegee intermediates (SCIs), play an important role in controlling the oxidative removal and transformation of many natural and anthropogenic trace gases in the atmosphere. Direct speciated measurements of these components are extremely helpful for understanding their atmospheric fate and impact. We describe the development of an online method for measurements of SCIs and <span class="inline-formula">RO<sub>2</sub></span> in laboratory experiments using chemical derivatization and spin trapping techniques combined with <span class="inline-formula">H<sub>3</sub>O<sup>+</sup></span> and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="24pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="dd01b19a584d9ff35339d41174090f98"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-2501-2021-ie00001.svg" width="24pt" height="15pt" src="amt-14-2501-2021-ie00001.png"/></svg:svg></span></span> chemical ionization mass spectrometry (CIMS). Using chemical derivatization agents with low proton affinity, such as electron-poor carbonyls, we scavenge all SCIs produced from a wide range of alkenes without depleting CIMS reagent ions. Comparison between our measurements and results from numeric modeling, using a modified version of the Master Chemical Mechanism, shows that the method can be used for the quantification of SCIs in laboratory experiments with a detection limit of <span class="inline-formula">1.4×10<sup>7</sup></span> molecule cm<span class="inline-formula"><sup>−3</sup></span> for an integration time of 30 s with the instrumentation used in this study. We show that spin traps are highly reactive towards atmospheric radicals and form stable adducts with them by studying the gas-phase kinetics of the reaction of spin traps with the hydroxyl radical (OH). We also demonstrate that spin trap adducts with SCIs and <span class="inline-formula">RO<sub>2</sub></span> can be simultaneously probed and quantified under laboratory conditions with a detection limit of <span class="inline-formula">1.6×10<sup>8</sup></span> molecule cm<span class="inline-formula"><sup>−3</sup></span> for an integration time of 30 s for <span class="inline-formula">RO<sub>2</sub></span> species with the instrumentation used in this study. Spin trapping prevents radical secondary reactions and cycling, ensuring that measurements are not biased by chemical interferences, and it can be implemented for detecting <span class="inline-formula">RO<sub>2</sub></span> species in laboratory studies and potentially in the ambient atmosphere.</p>
first_indexed 2024-12-14T15:00:59Z
format Article
id doaj.art-5633e4bbb603460f855464aa5d93c126
institution Directory Open Access Journal
issn 1867-1381
1867-8548
language English
last_indexed 2024-12-14T15:00:59Z
publishDate 2021-03-01
publisher Copernicus Publications
record_format Article
series Atmospheric Measurement Techniques
spelling doaj.art-5633e4bbb603460f855464aa5d93c1262022-12-21T22:56:50ZengCopernicus PublicationsAtmospheric Measurement Techniques1867-13811867-85482021-03-01142501251310.5194/amt-14-2501-2021Application of chemical derivatization techniques combined with chemical ionization mass spectrometry to detect stabilized Criegee intermediates and peroxy radicals in the gas phaseA. Zaytsev0M. Breitenlechner1M. Breitenlechner2A. Novelli3H. Fuchs4D. A. Knopf5J. H. Kroll6F. N. Keutsch7F. N. Keutsch8F. N. Keutsch9John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USAJohn A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USAnow at: NOAA Chemical Sciences Laboratory, Boulder, CO 80305, USAInstitute of Energy and Climate Research – Troposphere (IEK-8), Forschungszentrum Jülich GmbH, 52428 Jülich, GermanyInstitute of Energy and Climate Research – Troposphere (IEK-8), Forschungszentrum Jülich GmbH, 52428 Jülich, GermanySchool of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794, USADepartment of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USAJohn A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USADepartment of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USADepartment of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA<p>Short-lived highly reactive atmospheric species, such as organic peroxy radicals (<span class="inline-formula">RO<sub>2</sub></span>) and stabilized Criegee intermediates (SCIs), play an important role in controlling the oxidative removal and transformation of many natural and anthropogenic trace gases in the atmosphere. Direct speciated measurements of these components are extremely helpful for understanding their atmospheric fate and impact. We describe the development of an online method for measurements of SCIs and <span class="inline-formula">RO<sub>2</sub></span> in laboratory experiments using chemical derivatization and spin trapping techniques combined with <span class="inline-formula">H<sub>3</sub>O<sup>+</sup></span> and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="24pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="dd01b19a584d9ff35339d41174090f98"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-2501-2021-ie00001.svg" width="24pt" height="15pt" src="amt-14-2501-2021-ie00001.png"/></svg:svg></span></span> chemical ionization mass spectrometry (CIMS). Using chemical derivatization agents with low proton affinity, such as electron-poor carbonyls, we scavenge all SCIs produced from a wide range of alkenes without depleting CIMS reagent ions. Comparison between our measurements and results from numeric modeling, using a modified version of the Master Chemical Mechanism, shows that the method can be used for the quantification of SCIs in laboratory experiments with a detection limit of <span class="inline-formula">1.4×10<sup>7</sup></span> molecule cm<span class="inline-formula"><sup>−3</sup></span> for an integration time of 30 s with the instrumentation used in this study. We show that spin traps are highly reactive towards atmospheric radicals and form stable adducts with them by studying the gas-phase kinetics of the reaction of spin traps with the hydroxyl radical (OH). We also demonstrate that spin trap adducts with SCIs and <span class="inline-formula">RO<sub>2</sub></span> can be simultaneously probed and quantified under laboratory conditions with a detection limit of <span class="inline-formula">1.6×10<sup>8</sup></span> molecule cm<span class="inline-formula"><sup>−3</sup></span> for an integration time of 30 s for <span class="inline-formula">RO<sub>2</sub></span> species with the instrumentation used in this study. Spin trapping prevents radical secondary reactions and cycling, ensuring that measurements are not biased by chemical interferences, and it can be implemented for detecting <span class="inline-formula">RO<sub>2</sub></span> species in laboratory studies and potentially in the ambient atmosphere.</p>https://amt.copernicus.org/articles/14/2501/2021/amt-14-2501-2021.pdf
spellingShingle A. Zaytsev
M. Breitenlechner
M. Breitenlechner
A. Novelli
H. Fuchs
D. A. Knopf
J. H. Kroll
F. N. Keutsch
F. N. Keutsch
F. N. Keutsch
Application of chemical derivatization techniques combined with chemical ionization mass spectrometry to detect stabilized Criegee intermediates and peroxy radicals in the gas phase
Atmospheric Measurement Techniques
title Application of chemical derivatization techniques combined with chemical ionization mass spectrometry to detect stabilized Criegee intermediates and peroxy radicals in the gas phase
title_full Application of chemical derivatization techniques combined with chemical ionization mass spectrometry to detect stabilized Criegee intermediates and peroxy radicals in the gas phase
title_fullStr Application of chemical derivatization techniques combined with chemical ionization mass spectrometry to detect stabilized Criegee intermediates and peroxy radicals in the gas phase
title_full_unstemmed Application of chemical derivatization techniques combined with chemical ionization mass spectrometry to detect stabilized Criegee intermediates and peroxy radicals in the gas phase
title_short Application of chemical derivatization techniques combined with chemical ionization mass spectrometry to detect stabilized Criegee intermediates and peroxy radicals in the gas phase
title_sort application of chemical derivatization techniques combined with chemical ionization mass spectrometry to detect stabilized criegee intermediates and peroxy radicals in the gas phase
url https://amt.copernicus.org/articles/14/2501/2021/amt-14-2501-2021.pdf
work_keys_str_mv AT azaytsev applicationofchemicalderivatizationtechniquescombinedwithchemicalionizationmassspectrometrytodetectstabilizedcriegeeintermediatesandperoxyradicalsinthegasphase
AT mbreitenlechner applicationofchemicalderivatizationtechniquescombinedwithchemicalionizationmassspectrometrytodetectstabilizedcriegeeintermediatesandperoxyradicalsinthegasphase
AT mbreitenlechner applicationofchemicalderivatizationtechniquescombinedwithchemicalionizationmassspectrometrytodetectstabilizedcriegeeintermediatesandperoxyradicalsinthegasphase
AT anovelli applicationofchemicalderivatizationtechniquescombinedwithchemicalionizationmassspectrometrytodetectstabilizedcriegeeintermediatesandperoxyradicalsinthegasphase
AT hfuchs applicationofchemicalderivatizationtechniquescombinedwithchemicalionizationmassspectrometrytodetectstabilizedcriegeeintermediatesandperoxyradicalsinthegasphase
AT daknopf applicationofchemicalderivatizationtechniquescombinedwithchemicalionizationmassspectrometrytodetectstabilizedcriegeeintermediatesandperoxyradicalsinthegasphase
AT jhkroll applicationofchemicalderivatizationtechniquescombinedwithchemicalionizationmassspectrometrytodetectstabilizedcriegeeintermediatesandperoxyradicalsinthegasphase
AT fnkeutsch applicationofchemicalderivatizationtechniquescombinedwithchemicalionizationmassspectrometrytodetectstabilizedcriegeeintermediatesandperoxyradicalsinthegasphase
AT fnkeutsch applicationofchemicalderivatizationtechniquescombinedwithchemicalionizationmassspectrometrytodetectstabilizedcriegeeintermediatesandperoxyradicalsinthegasphase
AT fnkeutsch applicationofchemicalderivatizationtechniquescombinedwithchemicalionizationmassspectrometrytodetectstabilizedcriegeeintermediatesandperoxyradicalsinthegasphase