Positive solutions for the one-dimensional p-Laplacian with nonlinear boundary conditions

We prove the existence of positive solutions for the \(p\)-Laplacian problem \[\begin{cases}-(r(t)\phi (u^{\prime }))^{\prime }=\lambda g(t)f(u),& t\in (0,1),\\au(0)-H_{1}(u^{\prime }(0))=0,\\cu(1)+H_{2}(u^{\prime}(1))=0,\end{cases}\] where \(\phi (s)=|s|^{p-2}s\), \(p\gt 1\), \(H_{i}:\mathbb{R}...

Full description

Bibliographic Details
Main Authors: D. D. Hai, X. Wang
Format: Article
Language:English
Published: AGH Univeristy of Science and Technology Press 2019-01-01
Series:Opuscula Mathematica
Subjects:
Online Access:https://www.opuscula.agh.edu.pl/vol39/5/art/opuscula_math_3938.pdf
_version_ 1819315446357164032
author D. D. Hai
X. Wang
author_facet D. D. Hai
X. Wang
author_sort D. D. Hai
collection DOAJ
description We prove the existence of positive solutions for the \(p\)-Laplacian problem \[\begin{cases}-(r(t)\phi (u^{\prime }))^{\prime }=\lambda g(t)f(u),& t\in (0,1),\\au(0)-H_{1}(u^{\prime }(0))=0,\\cu(1)+H_{2}(u^{\prime}(1))=0,\end{cases}\] where \(\phi (s)=|s|^{p-2}s\), \(p\gt 1\), \(H_{i}:\mathbb{R}\rightarrow\mathbb{R}\) can be nonlinear, \(i=1,2\), \(f:(0,\infty )\rightarrow \mathbb{R}\) is \(p\)-superlinear or \(p\)-sublinear at \(\infty\) and is allowed be singular \((\pm\infty)\) at \(0\), and \(\lambda\) is a positive parameter.
first_indexed 2024-12-24T10:00:14Z
format Article
id doaj.art-563a8fef20564dd485850f1f614e9520
institution Directory Open Access Journal
issn 1232-9274
language English
last_indexed 2024-12-24T10:00:14Z
publishDate 2019-01-01
publisher AGH Univeristy of Science and Technology Press
record_format Article
series Opuscula Mathematica
spelling doaj.art-563a8fef20564dd485850f1f614e95202022-12-21T17:01:07ZengAGH Univeristy of Science and Technology PressOpuscula Mathematica1232-92742019-01-01395675689https://doi.org/10.7494/OpMath.2019.39.5.6753938Positive solutions for the one-dimensional p-Laplacian with nonlinear boundary conditionsD. D. Hai0https://orcid.org/0000-0002-9927-0793X. Wang1https://orcid.org/0000-0001-5584-5009Mississippi State University, Department of Mathematics and Statistics, Mississippi State, MS 39762, USAMississippi State University, Department of Mathematics and Statistics, Mississippi State, MS 39762, USAWe prove the existence of positive solutions for the \(p\)-Laplacian problem \[\begin{cases}-(r(t)\phi (u^{\prime }))^{\prime }=\lambda g(t)f(u),& t\in (0,1),\\au(0)-H_{1}(u^{\prime }(0))=0,\\cu(1)+H_{2}(u^{\prime}(1))=0,\end{cases}\] where \(\phi (s)=|s|^{p-2}s\), \(p\gt 1\), \(H_{i}:\mathbb{R}\rightarrow\mathbb{R}\) can be nonlinear, \(i=1,2\), \(f:(0,\infty )\rightarrow \mathbb{R}\) is \(p\)-superlinear or \(p\)-sublinear at \(\infty\) and is allowed be singular \((\pm\infty)\) at \(0\), and \(\lambda\) is a positive parameter.https://www.opuscula.agh.edu.pl/vol39/5/art/opuscula_math_3938.pdf\(p\)-laplaciansemipositonenonlinear boundary conditionspositive solutions
spellingShingle D. D. Hai
X. Wang
Positive solutions for the one-dimensional p-Laplacian with nonlinear boundary conditions
Opuscula Mathematica
\(p\)-laplacian
semipositone
nonlinear boundary conditions
positive solutions
title Positive solutions for the one-dimensional p-Laplacian with nonlinear boundary conditions
title_full Positive solutions for the one-dimensional p-Laplacian with nonlinear boundary conditions
title_fullStr Positive solutions for the one-dimensional p-Laplacian with nonlinear boundary conditions
title_full_unstemmed Positive solutions for the one-dimensional p-Laplacian with nonlinear boundary conditions
title_short Positive solutions for the one-dimensional p-Laplacian with nonlinear boundary conditions
title_sort positive solutions for the one dimensional p laplacian with nonlinear boundary conditions
topic \(p\)-laplacian
semipositone
nonlinear boundary conditions
positive solutions
url https://www.opuscula.agh.edu.pl/vol39/5/art/opuscula_math_3938.pdf
work_keys_str_mv AT ddhai positivesolutionsfortheonedimensionalplaplacianwithnonlinearboundaryconditions
AT xwang positivesolutionsfortheonedimensionalplaplacianwithnonlinearboundaryconditions