GDAL and PROJ Libraries Integrated with GRASS GIS for Terrain Modelling of the Georeferenced Raster Image

Libraries with pre-written codes optimize the workflow in cartography and reduce labour intensive data processing by iteratively applying scripts to implementing mapping tasks. Most existing Geographic Information System (GIS) approaches are based on traditional software with a graphical user’s inte...

Full description

Bibliographic Details
Main Authors: Polina Lemenkova, Olivier Debeir
Format: Article
Language:English
Published: MDPI AG 2023-03-01
Series:Technologies
Subjects:
Online Access:https://www.mdpi.com/2227-7080/11/2/46
_version_ 1827743610002472960
author Polina Lemenkova
Olivier Debeir
author_facet Polina Lemenkova
Olivier Debeir
author_sort Polina Lemenkova
collection DOAJ
description Libraries with pre-written codes optimize the workflow in cartography and reduce labour intensive data processing by iteratively applying scripts to implementing mapping tasks. Most existing Geographic Information System (GIS) approaches are based on traditional software with a graphical user’s interface which significantly limits their performance. Although plugins are proposed to improve the functionality of many GIS programs, they are usually ad hoc in finding specific mapping solutions, e.g., cartographic projections and data conversion. We address this limitation by applying the principled approach of Geospatial Data Abstraction Library (GDAL), library for conversions between cartographic projections (PROJ) and Geographic Resources Analysis Support System (GRASS) GIS for geospatial data processing and morphometric analysis. This research presents topographic analysis of the dataset using scripting methods which include several tools: (1) GDAL, a translator library for raster and vector geospatial data formats used for converting Earth Global Relief Model (ETOPO1) GeoTIFF in XY Cartesian coordinates into World Geodetic System 1984 (WGS84) by the ‘gdalwarp’ utility; (2) PROJ projection transformation library used for converting ETOPO1 WGS84 grid to cartographic projections (Cassini–Soldner equirectangular, Equal Area Cylindrical, Two-Point Equidistant Azimuthal, and Oblique Mercator); and (3) GRASS GIS by sequential use of the following modules: r.info, d.mon, d.rast, r.colors, d.rast.leg, d.legend, d.northarrow, d.grid, d.text, g.region, and r.contour. The depth frequency was analysed by the module ‘d.histogram’. The proposed approach provided a systematic way for morphometric measuring of topographic data and combine the advantages of the GDAL, PROJ, and GRASS GIS tools that include the informativeness, effectiveness, and representativeness in spatial data processing. The morphometric analysis included the computed slope, aspect, profile, and tangential curvature of the study area. The data analysis revealed the distribution pattern in topographic data: 24% of data with elevations below 400 m, 13% of data with depths −5000 to −6000 m, 4% of depths have values −3000 to −4000 m, the least frequent data (−6000 to 7000 m) <1%, 2% of depths have values −2000 to 3000 m in the basin, while other values are distributed proportionally. Further, by incorporating the generic coordinate transformation software library PROJ, the raster grid was transformed into various cartographic projections to demonstrate distortions in shape and area. Scripting techniques of GRASS GIS are demonstrated for applications in topographic modelling and raster data processing. The GRASS GIS shows the effectiveness for mapping and visualization, compatibility with libraries (GDAL, PROJ), technical flexibility in combining Graphical User Interface (GUI), and command-line data processing. The research contributes to the technical cartographic development.
first_indexed 2024-03-11T04:29:00Z
format Article
id doaj.art-564eef084c25437bb81eae2201130493
institution Directory Open Access Journal
issn 2227-7080
language English
last_indexed 2024-03-11T04:29:00Z
publishDate 2023-03-01
publisher MDPI AG
record_format Article
series Technologies
spelling doaj.art-564eef084c25437bb81eae22011304932023-11-17T21:36:01ZengMDPI AGTechnologies2227-70802023-03-011124610.3390/technologies11020046GDAL and PROJ Libraries Integrated with GRASS GIS for Terrain Modelling of the Georeferenced Raster ImagePolina Lemenkova0Olivier Debeir1Laboratory of Image Synthesis and Analysis (LISA), École Polytechnique de Bruxelles, Campus du Solbosch, Université Libre de Bruxelles (ULB), Avenue Franklin Roosevelt 50, 1050 Brussels, BelgiumLaboratory of Image Synthesis and Analysis (LISA), École Polytechnique de Bruxelles, Campus du Solbosch, Université Libre de Bruxelles (ULB), Avenue Franklin Roosevelt 50, 1050 Brussels, BelgiumLibraries with pre-written codes optimize the workflow in cartography and reduce labour intensive data processing by iteratively applying scripts to implementing mapping tasks. Most existing Geographic Information System (GIS) approaches are based on traditional software with a graphical user’s interface which significantly limits their performance. Although plugins are proposed to improve the functionality of many GIS programs, they are usually ad hoc in finding specific mapping solutions, e.g., cartographic projections and data conversion. We address this limitation by applying the principled approach of Geospatial Data Abstraction Library (GDAL), library for conversions between cartographic projections (PROJ) and Geographic Resources Analysis Support System (GRASS) GIS for geospatial data processing and morphometric analysis. This research presents topographic analysis of the dataset using scripting methods which include several tools: (1) GDAL, a translator library for raster and vector geospatial data formats used for converting Earth Global Relief Model (ETOPO1) GeoTIFF in XY Cartesian coordinates into World Geodetic System 1984 (WGS84) by the ‘gdalwarp’ utility; (2) PROJ projection transformation library used for converting ETOPO1 WGS84 grid to cartographic projections (Cassini–Soldner equirectangular, Equal Area Cylindrical, Two-Point Equidistant Azimuthal, and Oblique Mercator); and (3) GRASS GIS by sequential use of the following modules: r.info, d.mon, d.rast, r.colors, d.rast.leg, d.legend, d.northarrow, d.grid, d.text, g.region, and r.contour. The depth frequency was analysed by the module ‘d.histogram’. The proposed approach provided a systematic way for morphometric measuring of topographic data and combine the advantages of the GDAL, PROJ, and GRASS GIS tools that include the informativeness, effectiveness, and representativeness in spatial data processing. The morphometric analysis included the computed slope, aspect, profile, and tangential curvature of the study area. The data analysis revealed the distribution pattern in topographic data: 24% of data with elevations below 400 m, 13% of data with depths −5000 to −6000 m, 4% of depths have values −3000 to −4000 m, the least frequent data (−6000 to 7000 m) <1%, 2% of depths have values −2000 to 3000 m in the basin, while other values are distributed proportionally. Further, by incorporating the generic coordinate transformation software library PROJ, the raster grid was transformed into various cartographic projections to demonstrate distortions in shape and area. Scripting techniques of GRASS GIS are demonstrated for applications in topographic modelling and raster data processing. The GRASS GIS shows the effectiveness for mapping and visualization, compatibility with libraries (GDAL, PROJ), technical flexibility in combining Graphical User Interface (GUI), and command-line data processing. The research contributes to the technical cartographic development.https://www.mdpi.com/2227-7080/11/2/46GDALPROJGRASS GISterrainDEMelevation
spellingShingle Polina Lemenkova
Olivier Debeir
GDAL and PROJ Libraries Integrated with GRASS GIS for Terrain Modelling of the Georeferenced Raster Image
Technologies
GDAL
PROJ
GRASS GIS
terrain
DEM
elevation
title GDAL and PROJ Libraries Integrated with GRASS GIS for Terrain Modelling of the Georeferenced Raster Image
title_full GDAL and PROJ Libraries Integrated with GRASS GIS for Terrain Modelling of the Georeferenced Raster Image
title_fullStr GDAL and PROJ Libraries Integrated with GRASS GIS for Terrain Modelling of the Georeferenced Raster Image
title_full_unstemmed GDAL and PROJ Libraries Integrated with GRASS GIS for Terrain Modelling of the Georeferenced Raster Image
title_short GDAL and PROJ Libraries Integrated with GRASS GIS for Terrain Modelling of the Georeferenced Raster Image
title_sort gdal and proj libraries integrated with grass gis for terrain modelling of the georeferenced raster image
topic GDAL
PROJ
GRASS GIS
terrain
DEM
elevation
url https://www.mdpi.com/2227-7080/11/2/46
work_keys_str_mv AT polinalemenkova gdalandprojlibrariesintegratedwithgrassgisforterrainmodellingofthegeoreferencedrasterimage
AT olivierdebeir gdalandprojlibrariesintegratedwithgrassgisforterrainmodellingofthegeoreferencedrasterimage