Summary: | Quasiperiodic modulation can prevent isolated quantum systems from equilibrating by localizing their degrees of freedom. In this article, we show that such systems can exhibit dynamically stable long-range orders forbidden in equilibrium. Specifically, we show that the interplay of symmetry breaking and localization in the quasiperiodic quantum Ising chain produces a quasiperiodic Ising glass stable at all energy densities. The glass order parameter vanishes with an essential singularity at the melting transition with no signatures in the equilibrium properties. The zero-temperature phase diagram is also surprisingly rich, consisting of paramagnetic, ferromagnetic, and quasiperiodically alternating ground-state phases with extended, localized, and critically delocalized low-energy excitations. The system exhibits an unusual quantum Ising transition whose properties are intermediate between those of the clean and infinite randomness Ising transitions. Many of these results follow from a geometric generalization of the Aubry-André duality that we develop. The quasiperiodic Ising glass may be realized in near-term quantum optical experiments.
|