Failure Analysis of Ultra-High Molecular Weight Polyethylene Tibial Insert in Total Knee Arthroplasty

Knee osteoarthritis is treated based on total knee arthroplasty (TKA) interventions. The most frequent failure cause identified in surgical practice is due to wear and oxidation processes of the prothesis’ tibial insert. This component is usually manufactured from ultra-high molecular weight polyeth...

Full description

Bibliographic Details
Main Authors: Veronica Manescu (Paltanea), Iulian Antoniac, Aurora Antoniac, Gheorghe Paltanea, Marian Miculescu, Ana-Iulia Bita, Stefan Laptoiu, Marius Niculescu, Alexandru Stere, Costel Paun, Mihai Bogdan Cristea
Format: Article
Language:English
Published: MDPI AG 2022-10-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/15/20/7102
Description
Summary:Knee osteoarthritis is treated based on total knee arthroplasty (TKA) interventions. The most frequent failure cause identified in surgical practice is due to wear and oxidation processes of the prothesis’ tibial insert. This component is usually manufactured from ultra-high molecular weight polyethylene (UHMWPE). To estimate the clinical complications related to a specific prosthesis design, we investigated four UHMWPE tibial inserts retrieved from patients from Clinical Hospital Colentina, Bucharest, Romania. For the initial analysis of the polyethylene degradation modes, macrophotography was chosen. A light stereomicroscope was used to estimate the structural performance and the implant surface degradation. Scanning electron microscopy confirmed the optical results and fulfilled the computation of the Hood index. The oxidation process in UHMWPE was analyzed based on Fourier-transform infrared spectroscopy (FTIR). The crystallinity degree and the oxidation index were computed in good agreement with the existing standards. Mechanical characterization was conducted based on the small punch test. The elastic modulus, initial peak load, ultimate load, and ultimate displacement were estimated. Based on the aforementioned experimental tests, a variation between 9 and 32 was found in the case of the Hood score. The oxidation index has a value of 1.33 for the reference sample and a maximum of 9.78 for a retrieved sample.
ISSN:1996-1944