3′UTR Deletion of <i>NONO</i> Leads to Corpus Callosum Anomaly, Left Ventricular Non-Compaction and Ebstein’s Anomaly in a Male Fetus

<i>NONO</i> (<i>Non-Pou Domain-Containing Octamer-Binding Protein</i>) gene maps on chromosome Xq13.1 and hemizygous loss-of-function nucleotide variants are associated with an emerging syndromic form of intellectual developmental disorder (MRXS34; MIM #300967), characterized...

Full description

Bibliographic Details
Main Authors: Maria Grazia Giuffrida, Marina Goldoni, Maria Luce Genovesi, Giovanna Carpentieri, Barbara Torres, Anca Daniela Deac, Serena Cecchetti, Anna Martinelli, Alessandro Vaisfeld, Elisabetta Flex, Laura Bernardini
Format: Article
Language:English
Published: MDPI AG 2022-09-01
Series:Diagnostics
Subjects:
Online Access:https://www.mdpi.com/2075-4418/12/10/2354
Description
Summary:<i>NONO</i> (<i>Non-Pou Domain-Containing Octamer-Binding Protein</i>) gene maps on chromosome Xq13.1 and hemizygous loss-of-function nucleotide variants are associated with an emerging syndromic form of intellectual developmental disorder (MRXS34; MIM #300967), characterized by developmental delay, intellectual disability, poor language, dysmorphic facial features, and microcephaly. Structural brain malformation, such as corpus callosum and cerebellar abnormalities, and heart defects, in particular left ventricular non-compaction (LVNC), represent the most recurrent congenital malformations, recorded both in about 80% of patients, and can be considered the distinctive imaging findings of this disorder. We present on a further case of <i>NONO</i>-related disease; prenatally diagnosed in a fetus with complete corpus callosum agenesis; absence of septum pellucidum; pericallosal artery; LVNC and Ebstein’s anomaly. A high-resolution microarray analysis demonstrated the presence of a deletion affecting the <i>NONO</i> 3′UTR; leading to a marked hypoexpression of the gene and the complete absence of the protein in cultured amniocytes. This case expands the mutational spectrum of MRXS34, advises to evaluate <i>NONO</i> variants in pre- and postnatal diagnosis of subjects affected by LVNC and other heart defects, especially if associated with corpus callosum anomalies and confirm that CNVs (Copy Number Variants) represent a non-negligible cause of Mendelian disorders.
ISSN:2075-4418