Exact asymptotic behavior of the positive solutions for some singular Dirichlet problems on the half line

In this article, we give an exact behavior at infinity of the unique solution to the following singular boundary value problem $$\displaylines{ -\frac{1}{A}(Au')'=q(t)g(u), \quad t \in (0,\infty), \cr u>0, \quad \lim_{t\to 0}A(t)u'(t)=0, \quad \lim_{t\to \infty}u(t)=0. }$$ He...

Full description

Bibliographic Details
Main Authors: Habib Maagli, Ramzi Alsaedi, Noureddine Zeddini
Format: Article
Language:English
Published: Texas State University 2016-02-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2016/49/abstr.html
Description
Summary:In this article, we give an exact behavior at infinity of the unique solution to the following singular boundary value problem $$\displaylines{ -\frac{1}{A}(Au')'=q(t)g(u), \quad t \in (0,\infty), \cr u>0, \quad \lim_{t\to 0}A(t)u'(t)=0, \quad \lim_{t\to \infty}u(t)=0. }$$ Here A is a nonnegative continuous function on $[0,\infty)$, positive and differentiable on $(0,\infty)$ such that $$ \lim_{t\to \infty}\frac{tA'(t)}{A(t)}=\alpha>1, \quad g \in C^1((0,\infty),(0,\infty)) $$ is non-increasing on $(0,\infty)$ with $\lim_{t\to 0}g'(t)\int_0^t\frac{ds}{g(s)}=-C_g\leq 0$ and the function q is a nonnegative continuous, satisfying $$ 0<a_1=\liminf_{t\to \infty}\frac{q(t)}{h(t)} \leq \limsup_{t\to \infty}\frac{q(t)}{h(t)}=a_2<\infty, $$ where $h(t)=c t^{-\lambda}\exp (\int_{1}^{t }\frac{y(s)}{s}ds)$, $\lambda \geq 2$, $c>0$ and y is continuous on $[ 1,\infty)$ such that $\lim_{t\to \infty}y(t)=0$.
ISSN:1072-6691