Investigation of transmission characteristic for harmonic magnetic gears considering dynamic eccentricity using magnetic equivalent circuit
Abstract Harmonic magnetic gears (HMGs) have the advantage of lubrication‐free, high speed ratio and high torque density, which make it an attractive solution for safety critical applications. Due to eccentricity caused by machining and assembly, HMG suffers from dynamic eccentricity (DE) in operati...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2024-02-01
|
Series: | IET Electric Power Applications |
Subjects: | |
Online Access: | https://doi.org/10.1049/elp2.12383 |
_version_ | 1797316124398845952 |
---|---|
author | Bingchu Li Jiahao Shi Shuangyuan Wang Chengliang Liu |
author_facet | Bingchu Li Jiahao Shi Shuangyuan Wang Chengliang Liu |
author_sort | Bingchu Li |
collection | DOAJ |
description | Abstract Harmonic magnetic gears (HMGs) have the advantage of lubrication‐free, high speed ratio and high torque density, which make it an attractive solution for safety critical applications. Due to eccentricity caused by machining and assembly, HMG suffers from dynamic eccentricity (DE) in operation, however, its effect on HMG performance is still unknown. Transmission characteristic of HMG under DE is studied. First, a magnetic equivalent circuit (MEC) model of HMG is proposed to build the magnetic coupling torque analytically, and the geometry of air gap is analysed parametrically to derive its equivalent reluctances. Flux density and coupling torque can be acquired by solving MEC equations. The accuracy of the MEC model is verified by finite element method. To study the transmission characteristic, an electromechanical coupling simulation framework for HMG is constructed, motion trajectories of rotors are investigated in case of DE, the output torque in locked‐rotor condition and speed response in continuous operation can be derived by simulation. It is found that torque ripples that have the same frequency with input rotor are induced by DE; the results are then verified in the experiment. This paper provides a theoretical guidance for the design and condition monitoring of HMG. |
first_indexed | 2024-03-08T03:14:40Z |
format | Article |
id | doaj.art-5683109e50204fe0b9d143d7715d83ea |
institution | Directory Open Access Journal |
issn | 1751-8660 1751-8679 |
language | English |
last_indexed | 2024-03-08T03:14:40Z |
publishDate | 2024-02-01 |
publisher | Wiley |
record_format | Article |
series | IET Electric Power Applications |
spelling | doaj.art-5683109e50204fe0b9d143d7715d83ea2024-02-12T16:22:55ZengWileyIET Electric Power Applications1751-86601751-86792024-02-0118222623910.1049/elp2.12383Investigation of transmission characteristic for harmonic magnetic gears considering dynamic eccentricity using magnetic equivalent circuitBingchu Li0Jiahao Shi1Shuangyuan Wang2Chengliang Liu3School of Mechanical Engineering University of Shanghai for Science and Technology Shanghai ChinaSchool of Mechanical Engineering University of Shanghai for Science and Technology Shanghai ChinaSchool of Mechanical Engineering University of Shanghai for Science and Technology Shanghai ChinaSchool of Mechanical Engineering Shanghai Jiao Tong University Shanghai ChinaAbstract Harmonic magnetic gears (HMGs) have the advantage of lubrication‐free, high speed ratio and high torque density, which make it an attractive solution for safety critical applications. Due to eccentricity caused by machining and assembly, HMG suffers from dynamic eccentricity (DE) in operation, however, its effect on HMG performance is still unknown. Transmission characteristic of HMG under DE is studied. First, a magnetic equivalent circuit (MEC) model of HMG is proposed to build the magnetic coupling torque analytically, and the geometry of air gap is analysed parametrically to derive its equivalent reluctances. Flux density and coupling torque can be acquired by solving MEC equations. The accuracy of the MEC model is verified by finite element method. To study the transmission characteristic, an electromechanical coupling simulation framework for HMG is constructed, motion trajectories of rotors are investigated in case of DE, the output torque in locked‐rotor condition and speed response in continuous operation can be derived by simulation. It is found that torque ripples that have the same frequency with input rotor are induced by DE; the results are then verified in the experiment. This paper provides a theoretical guidance for the design and condition monitoring of HMG.https://doi.org/10.1049/elp2.12383electromechanical effectsequivalent circuitsmagnetic gearstorque |
spellingShingle | Bingchu Li Jiahao Shi Shuangyuan Wang Chengliang Liu Investigation of transmission characteristic for harmonic magnetic gears considering dynamic eccentricity using magnetic equivalent circuit IET Electric Power Applications electromechanical effects equivalent circuits magnetic gears torque |
title | Investigation of transmission characteristic for harmonic magnetic gears considering dynamic eccentricity using magnetic equivalent circuit |
title_full | Investigation of transmission characteristic for harmonic magnetic gears considering dynamic eccentricity using magnetic equivalent circuit |
title_fullStr | Investigation of transmission characteristic for harmonic magnetic gears considering dynamic eccentricity using magnetic equivalent circuit |
title_full_unstemmed | Investigation of transmission characteristic for harmonic magnetic gears considering dynamic eccentricity using magnetic equivalent circuit |
title_short | Investigation of transmission characteristic for harmonic magnetic gears considering dynamic eccentricity using magnetic equivalent circuit |
title_sort | investigation of transmission characteristic for harmonic magnetic gears considering dynamic eccentricity using magnetic equivalent circuit |
topic | electromechanical effects equivalent circuits magnetic gears torque |
url | https://doi.org/10.1049/elp2.12383 |
work_keys_str_mv | AT bingchuli investigationoftransmissioncharacteristicforharmonicmagneticgearsconsideringdynamiceccentricityusingmagneticequivalentcircuit AT jiahaoshi investigationoftransmissioncharacteristicforharmonicmagneticgearsconsideringdynamiceccentricityusingmagneticequivalentcircuit AT shuangyuanwang investigationoftransmissioncharacteristicforharmonicmagneticgearsconsideringdynamiceccentricityusingmagneticequivalentcircuit AT chengliangliu investigationoftransmissioncharacteristicforharmonicmagneticgearsconsideringdynamiceccentricityusingmagneticequivalentcircuit |