Mittag-Leffler-Hyers-Ulam-Rassias stability of cubic functional equation

In this paper, we prove the Mittag-Leffler-Hyers-Ulam-Rassias stability for cubic functional equation by using the fixed point alternative theorem. As a consequence, we show that the cubic multipliers are superstable under some conditions.

Bibliographic Details
Main Authors: V Kalvandi, M. E Samei
Format: Article
Language:English
Published: Qom University of Technology 2021-09-01
Series:Mathematics and Computational Sciences
Subjects:
Online Access:https://mcs.qut.ac.ir/article_245320_a50223ab0d2ff9836eb1fd229c443b81.pdf
_version_ 1827357575734099968
author V Kalvandi
M. E Samei
author_facet V Kalvandi
M. E Samei
author_sort V Kalvandi
collection DOAJ
description In this paper, we prove the Mittag-Leffler-Hyers-Ulam-Rassias stability for cubic functional equation by using the fixed point alternative theorem. As a consequence, we show that the cubic multipliers are superstable under some conditions.
first_indexed 2024-03-08T05:35:49Z
format Article
id doaj.art-56941c428c834df78d1cc117c51d1b06
institution Directory Open Access Journal
issn 2717-2708
language English
last_indexed 2024-03-08T05:35:49Z
publishDate 2021-09-01
publisher Qom University of Technology
record_format Article
series Mathematics and Computational Sciences
spelling doaj.art-56941c428c834df78d1cc117c51d1b062024-02-05T19:34:42ZengQom University of TechnologyMathematics and Computational Sciences2717-27082021-09-0123142110.30511/mcs.2021.532909.1027245320Mittag-Leffler-Hyers-Ulam-Rassias stability of cubic functional equationV Kalvandi0M. E Samei1Department of Mathematics, Razi University, Kermanshah, IranDepartment of Mathematics, Faculty of Basic Science, Bu-Ali Sina University, Hamedan, IranIn this paper, we prove the Mittag-Leffler-Hyers-Ulam-Rassias stability for cubic functional equation by using the fixed point alternative theorem. As a consequence, we show that the cubic multipliers are superstable under some conditions.https://mcs.qut.ac.ir/article_245320_a50223ab0d2ff9836eb1fd229c443b81.pdfquadratic functionalsuperstablecubic multipliers
spellingShingle V Kalvandi
M. E Samei
Mittag-Leffler-Hyers-Ulam-Rassias stability of cubic functional equation
Mathematics and Computational Sciences
quadratic functional
superstable
cubic multipliers
title Mittag-Leffler-Hyers-Ulam-Rassias stability of cubic functional equation
title_full Mittag-Leffler-Hyers-Ulam-Rassias stability of cubic functional equation
title_fullStr Mittag-Leffler-Hyers-Ulam-Rassias stability of cubic functional equation
title_full_unstemmed Mittag-Leffler-Hyers-Ulam-Rassias stability of cubic functional equation
title_short Mittag-Leffler-Hyers-Ulam-Rassias stability of cubic functional equation
title_sort mittag leffler hyers ulam rassias stability of cubic functional equation
topic quadratic functional
superstable
cubic multipliers
url https://mcs.qut.ac.ir/article_245320_a50223ab0d2ff9836eb1fd229c443b81.pdf
work_keys_str_mv AT vkalvandi mittaglefflerhyersulamrassiasstabilityofcubicfunctionalequation
AT mesamei mittaglefflerhyersulamrassiasstabilityofcubicfunctionalequation