Pavement Defect Segmentation in Orthoframes with a Pipeline of Three Convolutional Neural Networks
In the manuscript, the issue of detecting and segmenting out pavement defects on highway roads is addressed. Specifically, computer vision (CV) methods are developed and applied to the problem based on deep learning of convolutional neural networks (ConvNets). A novel neural network structure is con...
Main Authors: | Roland Lõuk, Andri Riid, René Pihlak, Aleksei Tepljakov |
---|---|
Format: | Article |
Sprog: | English |
Udgivet: |
MDPI AG
2020-08-01
|
Serier: | Algorithms |
Fag: | |
Online adgang: | https://www.mdpi.com/1999-4893/13/8/198 |
Lignende værker
-
Automated Distress Detection, Classification and Measurement for Asphalt Urban Pavements Using YOLO
af: Paulina Gómez-Conti, et al.
Udgivet: (2023-08-01) -
Automated Pavement Distress Detection Based on Convolutional Neural Network
af: Jinhe Zhang, et al.
Udgivet: (2024-01-01) -
Automated Multi-Type Pavement Distress Segmentation and Quantification Using Transformer Networks for Pavement Condition Index Prediction
af: Zaiyan Zhang, et al.
Udgivet: (2024-05-01) -
Exploring the Efficacy of Sparse Feature in Pavement Distress Image Classification: A Focus on Pavement-Specific Knowledge
af: Ye Yuan, et al.
Udgivet: (2023-09-01) -
Pavement condition detection using acceleration data collected by smartphones based on 1D convolutional neural network
af: Yudong Han, et al.
Udgivet: (2024-12-01)