Transient thermal behavior of a passive heat sink integrated with phase change material: A numerical simulation
This paper presents a numerical investigation of the thermal performance of a heat sink augmented with phase change material (PCM) for passive electronic cooling applications. The PCM-based heat sink employed N-eicosane as the PCM, which has a suitable melting temperature and high latent heat capaci...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2023-11-01
|
Series: | International Journal of Thermofluids |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2666202723001696 |
_version_ | 1827593574211911680 |
---|---|
author | Vahid Safari Babak Kamkari Masoud Zandimagham Neil Hewitt |
author_facet | Vahid Safari Babak Kamkari Masoud Zandimagham Neil Hewitt |
author_sort | Vahid Safari |
collection | DOAJ |
description | This paper presents a numerical investigation of the thermal performance of a heat sink augmented with phase change material (PCM) for passive electronic cooling applications. The PCM-based heat sink employed N-eicosane as the PCM, which has a suitable melting temperature and high latent heat capacity for electronic cooling applications. A numerical simulation based on the enthalpy-porosity method was developed to analyze the impact of both PCM inclusion and induced natural convection airflow on the base temperature of the heat sink. The operational conditions were selected as three constant heat fluxes of 2, 3, and, 4 kW/m2 and four critical base temperatures of 40, 45, 50, and 55 °C. The influence of fin numbers on the thermal behavior of both PCM-based and conventional (without PCM) heat sinks was also investigated by considering the three fin numbers of 4, 5 and, 6. The PCM integration into the heat sink effectively delayed the rise of base temperature and extended the safe operation time compared to a conventional one. The thermal performance enhancement ratio of the PCM-based heat sink over the conventional heat sink ranged from 1.53 to 2.81, depending on the selected heat flux and critical temperature. The effect of fin numbers on thermal performance was more significant at lower heat fluxes. It was observed that the PCM-based heat sinks achieved a higher time-averaged heat transfer coefficient than the conventional heat sinks, and this coefficient increased with the heat flux and decreased with the fin number. For both PCM-based and conventional heat sinks, it was observed that increasing the fin number reduces the heat transfer coefficient value due to the suppressing effect of fins on natural convection current. The results demonstrate the potential of using passive PCM-based heat sinks for improving the reliability and efficiency of electronic devices compared to conventional heat sinks. |
first_indexed | 2024-03-09T02:13:36Z |
format | Article |
id | doaj.art-56a4a6d4e7ac48d4aceeffc873b9795d |
institution | Directory Open Access Journal |
issn | 2666-2027 |
language | English |
last_indexed | 2024-03-09T02:13:36Z |
publishDate | 2023-11-01 |
publisher | Elsevier |
record_format | Article |
series | International Journal of Thermofluids |
spelling | doaj.art-56a4a6d4e7ac48d4aceeffc873b9795d2023-12-07T05:30:48ZengElsevierInternational Journal of Thermofluids2666-20272023-11-0120100454Transient thermal behavior of a passive heat sink integrated with phase change material: A numerical simulationVahid Safari0Babak Kamkari1Masoud Zandimagham2Neil Hewitt3Department of Thermal and Fluids Engineering, Carlos III University of Madrid, Madrid, SpainCentre for Sustainable Technologies, Belfast School of Architecture and the Built Environment, Ulster University, UK; Corresponding author.Department of Mechanical Engineering, Shahre-Rey Branch, Islamic Azad University, Tehran, IranCentre for Sustainable Technologies, Belfast School of Architecture and the Built Environment, Ulster University, UKThis paper presents a numerical investigation of the thermal performance of a heat sink augmented with phase change material (PCM) for passive electronic cooling applications. The PCM-based heat sink employed N-eicosane as the PCM, which has a suitable melting temperature and high latent heat capacity for electronic cooling applications. A numerical simulation based on the enthalpy-porosity method was developed to analyze the impact of both PCM inclusion and induced natural convection airflow on the base temperature of the heat sink. The operational conditions were selected as three constant heat fluxes of 2, 3, and, 4 kW/m2 and four critical base temperatures of 40, 45, 50, and 55 °C. The influence of fin numbers on the thermal behavior of both PCM-based and conventional (without PCM) heat sinks was also investigated by considering the three fin numbers of 4, 5 and, 6. The PCM integration into the heat sink effectively delayed the rise of base temperature and extended the safe operation time compared to a conventional one. The thermal performance enhancement ratio of the PCM-based heat sink over the conventional heat sink ranged from 1.53 to 2.81, depending on the selected heat flux and critical temperature. The effect of fin numbers on thermal performance was more significant at lower heat fluxes. It was observed that the PCM-based heat sinks achieved a higher time-averaged heat transfer coefficient than the conventional heat sinks, and this coefficient increased with the heat flux and decreased with the fin number. For both PCM-based and conventional heat sinks, it was observed that increasing the fin number reduces the heat transfer coefficient value due to the suppressing effect of fins on natural convection current. The results demonstrate the potential of using passive PCM-based heat sinks for improving the reliability and efficiency of electronic devices compared to conventional heat sinks.http://www.sciencedirect.com/science/article/pii/S2666202723001696PCM-based heat sinkNatural convectionPhase change material (PCM)Heat transfer |
spellingShingle | Vahid Safari Babak Kamkari Masoud Zandimagham Neil Hewitt Transient thermal behavior of a passive heat sink integrated with phase change material: A numerical simulation International Journal of Thermofluids PCM-based heat sink Natural convection Phase change material (PCM) Heat transfer |
title | Transient thermal behavior of a passive heat sink integrated with phase change material: A numerical simulation |
title_full | Transient thermal behavior of a passive heat sink integrated with phase change material: A numerical simulation |
title_fullStr | Transient thermal behavior of a passive heat sink integrated with phase change material: A numerical simulation |
title_full_unstemmed | Transient thermal behavior of a passive heat sink integrated with phase change material: A numerical simulation |
title_short | Transient thermal behavior of a passive heat sink integrated with phase change material: A numerical simulation |
title_sort | transient thermal behavior of a passive heat sink integrated with phase change material a numerical simulation |
topic | PCM-based heat sink Natural convection Phase change material (PCM) Heat transfer |
url | http://www.sciencedirect.com/science/article/pii/S2666202723001696 |
work_keys_str_mv | AT vahidsafari transientthermalbehaviorofapassiveheatsinkintegratedwithphasechangematerialanumericalsimulation AT babakkamkari transientthermalbehaviorofapassiveheatsinkintegratedwithphasechangematerialanumericalsimulation AT masoudzandimagham transientthermalbehaviorofapassiveheatsinkintegratedwithphasechangematerialanumericalsimulation AT neilhewitt transientthermalbehaviorofapassiveheatsinkintegratedwithphasechangematerialanumericalsimulation |