Summary: | This study investigated the effects of particle shape and temperature on the compaction of copper powder at micro scale. Copper powder particles were compressed inside a cylindrical die cavity with 2 mm diameter to form compacts with about 3 mm height. Two kinds of particle shapes, spherical and dendritic, and two forming temperatures, room temperature and 400 °C, were considered in the experiments. Some of the produced compacts were further sintered at 600 °C. The study also used simple upsetting tests to investigate the characteristics of the deformation of the compacts under compressive stresses. The results showed that the compacts produced at room temperature demonstrated brittle deformations. However, by increasing the forming temperature to 400 °C, ductile deformations have been observed on the compacts of dendritic particles. Furthermore, the sintering treatment resulted in increases in dimensions, decreases in relative density and hardness, and an increase in ductility. It also led to pore growths which have been seen on scanning-electron microscope images. These phenomena were most significant in the dendritic powder compacts which were produced at 400 °C and treated by the sintering process.
|