Protective Effects of Proanthocyanidin-Rich Fraction from Red Rice Germ and Bran on Lung Cell Inflammation via Inhibition of NF-κB/NLRP3 Inflammasome Pathway

The activation of the NLRP3 inflammasome pathway during infectious pathogen-induced immunopathology can lead to chronic inflammation and various adverse health outcomes. Identification of functional foods with anti-inflammatory properties is crucial for preventing inflammation triggered by NLRP3 inf...

Full description

Bibliographic Details
Main Authors: Warathit Semmarath, Kamonwan Srisawad, Punnida Arjsri, Sonthaya Umsumarng, Supachai Yodkeeree, Sansanee Jamjod, Chanakan Prom-u-thai, Pornngarm Dejkriengkraikul
Format: Article
Language:English
Published: MDPI AG 2023-08-01
Series:Nutrients
Subjects:
Online Access:https://www.mdpi.com/2072-6643/15/17/3793
Description
Summary:The activation of the NLRP3 inflammasome pathway during infectious pathogen-induced immunopathology can lead to chronic inflammation and various adverse health outcomes. Identification of functional foods with anti-inflammatory properties is crucial for preventing inflammation triggered by NLRP3 inflammasome activation. This study aimed to investigate the anti-inflammatory properties of a proanthocyanidin-rich fraction obtained from red rice germ and bran against lipopolysaccharide (LPS) and adenosine triphosphate (ATP)-induced condition in A549 lung cells. The proanthocyanidin-rich fraction from Yamuechaebia 3 red rice extract (YM3-PRF) was obtained using column chromatography with Sephadex LH20, and its total proanthocyanidin content was determined to be 351.43 ± 1.18 mg/g extract using the vanillin assay. A549 lung cells were pretreated with YM3-PRF at concentrations of 5–20 μg/mL prior to exposure to LPS (1 μg/mL) and ATP (5 nM). The results showed that YM3-PRF significantly inhibited the expression of inflammatory mRNAs (NLRP3, IL-6, IL-1β, and IL-18) and the secretion of cytokines (IL-6, IL-1β, and IL-18) in a dose-dependent manner (<i>p</i> < 0.05). Mechanistically, YM3-PRF exerted its anti-inflammatory effects by inhibiting NF-κB translocation and downregulating proteins associated with the NLRP3 inflammasome pathway (NLRP3, ASC, pro-caspase-1, and cleaved-caspase-1). These findings suggest that the proanthocyanidin-rich fraction from red rice germ and bran has protective effects and may serve as a potential therapeutic option for chronic inflammatory diseases associated with NLRP3 inflammasome activation.
ISSN:2072-6643