Focused Ultrasound for Noninvasive, Focal Pharmacologic Neurointervention
A long-standing goal of translational neuroscience is the ability to noninvasively deliver therapeutic agents to specific brain regions with high spatiotemporal resolution. Focused ultrasound (FUS) is an emerging technology that can noninvasively deliver energy up the order of 1 kW/cm2 with millimet...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2020-07-01
|
Series: | Frontiers in Neuroscience |
Subjects: | |
Online Access: | https://www.frontiersin.org/article/10.3389/fnins.2020.00675/full |
_version_ | 1819117914411761664 |
---|---|
author | Jeffrey B. Wang Tommaso Di Ianni Daivik B. Vyas Zhenbo Huang Sunmee Park Niloufar Hosseini-Nassab Muna Aryal Raag D. Airan |
author_facet | Jeffrey B. Wang Tommaso Di Ianni Daivik B. Vyas Zhenbo Huang Sunmee Park Niloufar Hosseini-Nassab Muna Aryal Raag D. Airan |
author_sort | Jeffrey B. Wang |
collection | DOAJ |
description | A long-standing goal of translational neuroscience is the ability to noninvasively deliver therapeutic agents to specific brain regions with high spatiotemporal resolution. Focused ultrasound (FUS) is an emerging technology that can noninvasively deliver energy up the order of 1 kW/cm2 with millimeter and millisecond resolution to any point in the human brain with Food and Drug Administration-approved hardware. Although FUS is clinically utilized primarily for focal ablation in conditions such as essential tremor, recent breakthroughs have enabled the use of FUS for drug delivery at lower intensities (i.e., tens of watts per square centimeter) without ablation of the tissue. In this review, we present strategies for image-guided FUS-mediated pharmacologic neurointerventions. First, we discuss blood–brain barrier opening to deliver therapeutic agents of a variety of sizes to the central nervous system. We then describe the use of ultrasound-sensitive nanoparticles to noninvasively deliver small molecules to millimeter-sized structures including superficial cortical regions and deep gray matter regions within the brain without the need for blood–brain barrier opening. We also consider the safety and potential complications of these techniques, with attention to temporal acuity. Finally, we close with a discussion of different methods for mapping the ultrasound field within the brain and describe future avenues of research in ultrasound-targeted drug therapies. |
first_indexed | 2024-12-22T05:40:33Z |
format | Article |
id | doaj.art-56c29f39af6b4c499eb4a6a9e0d8d7f2 |
institution | Directory Open Access Journal |
issn | 1662-453X |
language | English |
last_indexed | 2024-12-22T05:40:33Z |
publishDate | 2020-07-01 |
publisher | Frontiers Media S.A. |
record_format | Article |
series | Frontiers in Neuroscience |
spelling | doaj.art-56c29f39af6b4c499eb4a6a9e0d8d7f22022-12-21T18:37:12ZengFrontiers Media S.A.Frontiers in Neuroscience1662-453X2020-07-011410.3389/fnins.2020.00675514541Focused Ultrasound for Noninvasive, Focal Pharmacologic NeurointerventionJeffrey B. WangTommaso Di IanniDaivik B. VyasZhenbo HuangSunmee ParkNiloufar Hosseini-NassabMuna AryalRaag D. AiranA long-standing goal of translational neuroscience is the ability to noninvasively deliver therapeutic agents to specific brain regions with high spatiotemporal resolution. Focused ultrasound (FUS) is an emerging technology that can noninvasively deliver energy up the order of 1 kW/cm2 with millimeter and millisecond resolution to any point in the human brain with Food and Drug Administration-approved hardware. Although FUS is clinically utilized primarily for focal ablation in conditions such as essential tremor, recent breakthroughs have enabled the use of FUS for drug delivery at lower intensities (i.e., tens of watts per square centimeter) without ablation of the tissue. In this review, we present strategies for image-guided FUS-mediated pharmacologic neurointerventions. First, we discuss blood–brain barrier opening to deliver therapeutic agents of a variety of sizes to the central nervous system. We then describe the use of ultrasound-sensitive nanoparticles to noninvasively deliver small molecules to millimeter-sized structures including superficial cortical regions and deep gray matter regions within the brain without the need for blood–brain barrier opening. We also consider the safety and potential complications of these techniques, with attention to temporal acuity. Finally, we close with a discussion of different methods for mapping the ultrasound field within the brain and describe future avenues of research in ultrasound-targeted drug therapies.https://www.frontiersin.org/article/10.3389/fnins.2020.00675/fullfocused ultrasounddrug deliveryneurointerventionneuromodulationnanotechnologyblood–brain barrier |
spellingShingle | Jeffrey B. Wang Tommaso Di Ianni Daivik B. Vyas Zhenbo Huang Sunmee Park Niloufar Hosseini-Nassab Muna Aryal Raag D. Airan Focused Ultrasound for Noninvasive, Focal Pharmacologic Neurointervention Frontiers in Neuroscience focused ultrasound drug delivery neurointervention neuromodulation nanotechnology blood–brain barrier |
title | Focused Ultrasound for Noninvasive, Focal Pharmacologic Neurointervention |
title_full | Focused Ultrasound for Noninvasive, Focal Pharmacologic Neurointervention |
title_fullStr | Focused Ultrasound for Noninvasive, Focal Pharmacologic Neurointervention |
title_full_unstemmed | Focused Ultrasound for Noninvasive, Focal Pharmacologic Neurointervention |
title_short | Focused Ultrasound for Noninvasive, Focal Pharmacologic Neurointervention |
title_sort | focused ultrasound for noninvasive focal pharmacologic neurointervention |
topic | focused ultrasound drug delivery neurointervention neuromodulation nanotechnology blood–brain barrier |
url | https://www.frontiersin.org/article/10.3389/fnins.2020.00675/full |
work_keys_str_mv | AT jeffreybwang focusedultrasoundfornoninvasivefocalpharmacologicneurointervention AT tommasodiianni focusedultrasoundfornoninvasivefocalpharmacologicneurointervention AT daivikbvyas focusedultrasoundfornoninvasivefocalpharmacologicneurointervention AT zhenbohuang focusedultrasoundfornoninvasivefocalpharmacologicneurointervention AT sunmeepark focusedultrasoundfornoninvasivefocalpharmacologicneurointervention AT niloufarhosseininassab focusedultrasoundfornoninvasivefocalpharmacologicneurointervention AT munaaryal focusedultrasoundfornoninvasivefocalpharmacologicneurointervention AT raagdairan focusedultrasoundfornoninvasivefocalpharmacologicneurointervention |