Whole-genome based strain identification of fowlpox virus directly from cutaneous tissue and propagated virus.
Fowlpox (FP) is an economically important viral disease of commercial poultry. The fowlpox virus (FPV) is primarily characterised by immunoblotting, restriction enzyme analysis in combination with PCR, and/or nucleotide sequencing of amplicons. Whole-genome sequencing (WGS) of FPV directly from clin...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2021-01-01
|
Series: | PLoS ONE |
Online Access: | https://doi.org/10.1371/journal.pone.0261122 |
_version_ | 1818942343897677824 |
---|---|
author | Kinza Asif Denise O'Rourke Alistair R Legione Pollob Shil Marc S Marenda Amir H Noormohammadi |
author_facet | Kinza Asif Denise O'Rourke Alistair R Legione Pollob Shil Marc S Marenda Amir H Noormohammadi |
author_sort | Kinza Asif |
collection | DOAJ |
description | Fowlpox (FP) is an economically important viral disease of commercial poultry. The fowlpox virus (FPV) is primarily characterised by immunoblotting, restriction enzyme analysis in combination with PCR, and/or nucleotide sequencing of amplicons. Whole-genome sequencing (WGS) of FPV directly from clinical specimens prevents the risk of potential genome modifications associated with in vitro culturing of the virus. Only one study has sequenced FPV genomes directly from clinical samples using Nanopore sequencing, however, the study didn't compare the sequences against Illumina sequencing or laboratory propagated sequences. Here, the suitability of WGS for strain identification of FPV directly from cutaneous tissue was evaluated, using a combination of Illumina and Nanopore sequencing technologies. Sequencing results were compared with the sequence obtained from FPV grown in chorioallantoic membranes (CAMs) of chicken embryos. Complete genome sequence of FPV was obtained directly from affected comb tissue using a map to reference approach. FPV sequence from cutaneous tissue was highly similar to that of the virus grown in CAMs with a nucleotide identity of 99.8%. Detailed polymorphism analysis revealed the presence of a highly comparable number of single nucleotide polymorphisms (SNPs) in the two sequences when compared to the reference genome, providing essentially the same strain identification information. Comparative genome analysis of the map to reference consensus sequences from the two genomes revealed that this field isolate had the highest nucleotide identity of 99.5% with an FPV strain from the USA (Fowlpox virus isolate, FWPV-MN00.2, MH709124) and 98.8% identity with the Australian FPV vaccine strain (FWPV-S, MW142017). Sequencing results showed that WGS directly from cutaneous tissues is not only rapid and cost-effective but also provides essentially the same strain identification information as in-vitro grown virus, thus circumventing in vitro culturing. |
first_indexed | 2024-12-20T07:09:56Z |
format | Article |
id | doaj.art-56ca8eb2ca5644ccbbb3b46ccb18b129 |
institution | Directory Open Access Journal |
issn | 1932-6203 |
language | English |
last_indexed | 2024-12-20T07:09:56Z |
publishDate | 2021-01-01 |
publisher | Public Library of Science (PLoS) |
record_format | Article |
series | PLoS ONE |
spelling | doaj.art-56ca8eb2ca5644ccbbb3b46ccb18b1292022-12-21T19:48:55ZengPublic Library of Science (PLoS)PLoS ONE1932-62032021-01-011612e026112210.1371/journal.pone.0261122Whole-genome based strain identification of fowlpox virus directly from cutaneous tissue and propagated virus.Kinza AsifDenise O'RourkeAlistair R LegionePollob ShilMarc S MarendaAmir H NoormohammadiFowlpox (FP) is an economically important viral disease of commercial poultry. The fowlpox virus (FPV) is primarily characterised by immunoblotting, restriction enzyme analysis in combination with PCR, and/or nucleotide sequencing of amplicons. Whole-genome sequencing (WGS) of FPV directly from clinical specimens prevents the risk of potential genome modifications associated with in vitro culturing of the virus. Only one study has sequenced FPV genomes directly from clinical samples using Nanopore sequencing, however, the study didn't compare the sequences against Illumina sequencing or laboratory propagated sequences. Here, the suitability of WGS for strain identification of FPV directly from cutaneous tissue was evaluated, using a combination of Illumina and Nanopore sequencing technologies. Sequencing results were compared with the sequence obtained from FPV grown in chorioallantoic membranes (CAMs) of chicken embryos. Complete genome sequence of FPV was obtained directly from affected comb tissue using a map to reference approach. FPV sequence from cutaneous tissue was highly similar to that of the virus grown in CAMs with a nucleotide identity of 99.8%. Detailed polymorphism analysis revealed the presence of a highly comparable number of single nucleotide polymorphisms (SNPs) in the two sequences when compared to the reference genome, providing essentially the same strain identification information. Comparative genome analysis of the map to reference consensus sequences from the two genomes revealed that this field isolate had the highest nucleotide identity of 99.5% with an FPV strain from the USA (Fowlpox virus isolate, FWPV-MN00.2, MH709124) and 98.8% identity with the Australian FPV vaccine strain (FWPV-S, MW142017). Sequencing results showed that WGS directly from cutaneous tissues is not only rapid and cost-effective but also provides essentially the same strain identification information as in-vitro grown virus, thus circumventing in vitro culturing.https://doi.org/10.1371/journal.pone.0261122 |
spellingShingle | Kinza Asif Denise O'Rourke Alistair R Legione Pollob Shil Marc S Marenda Amir H Noormohammadi Whole-genome based strain identification of fowlpox virus directly from cutaneous tissue and propagated virus. PLoS ONE |
title | Whole-genome based strain identification of fowlpox virus directly from cutaneous tissue and propagated virus. |
title_full | Whole-genome based strain identification of fowlpox virus directly from cutaneous tissue and propagated virus. |
title_fullStr | Whole-genome based strain identification of fowlpox virus directly from cutaneous tissue and propagated virus. |
title_full_unstemmed | Whole-genome based strain identification of fowlpox virus directly from cutaneous tissue and propagated virus. |
title_short | Whole-genome based strain identification of fowlpox virus directly from cutaneous tissue and propagated virus. |
title_sort | whole genome based strain identification of fowlpox virus directly from cutaneous tissue and propagated virus |
url | https://doi.org/10.1371/journal.pone.0261122 |
work_keys_str_mv | AT kinzaasif wholegenomebasedstrainidentificationoffowlpoxvirusdirectlyfromcutaneoustissueandpropagatedvirus AT deniseorourke wholegenomebasedstrainidentificationoffowlpoxvirusdirectlyfromcutaneoustissueandpropagatedvirus AT alistairrlegione wholegenomebasedstrainidentificationoffowlpoxvirusdirectlyfromcutaneoustissueandpropagatedvirus AT pollobshil wholegenomebasedstrainidentificationoffowlpoxvirusdirectlyfromcutaneoustissueandpropagatedvirus AT marcsmarenda wholegenomebasedstrainidentificationoffowlpoxvirusdirectlyfromcutaneoustissueandpropagatedvirus AT amirhnoormohammadi wholegenomebasedstrainidentificationoffowlpoxvirusdirectlyfromcutaneoustissueandpropagatedvirus |