Controlling effective field contributions to laser-induced magnetization precession by heterostructure design

Abstract Nanoscale heterostructure design can control laser-induced heat dissipation and strain propagation, as well as their efficiency for driving magnetization precession. Here, we incorporate MgO layers into the experimental platform of metallic Pt-Cu-Ni heterostructures to block the propagation...

Full description

Bibliographic Details
Main Authors: Jasmin Jarecki, Maximilian Mattern, Fried-Conrad Weber, Jan-Etienne Pudell, Xi-Guang Wang, Juan-Carlos Rojas Sánchez, Michel Hehn, Alexander von Reppert, Matias Bargheer
Format: Article
Language:English
Published: Nature Portfolio 2024-03-01
Series:Communications Physics
Online Access:https://doi.org/10.1038/s42005-024-01602-z
_version_ 1797233521465491456
author Jasmin Jarecki
Maximilian Mattern
Fried-Conrad Weber
Jan-Etienne Pudell
Xi-Guang Wang
Juan-Carlos Rojas Sánchez
Michel Hehn
Alexander von Reppert
Matias Bargheer
author_facet Jasmin Jarecki
Maximilian Mattern
Fried-Conrad Weber
Jan-Etienne Pudell
Xi-Guang Wang
Juan-Carlos Rojas Sánchez
Michel Hehn
Alexander von Reppert
Matias Bargheer
author_sort Jasmin Jarecki
collection DOAJ
description Abstract Nanoscale heterostructure design can control laser-induced heat dissipation and strain propagation, as well as their efficiency for driving magnetization precession. Here, we incorporate MgO layers into the experimental platform of metallic Pt-Cu-Ni heterostructures to block the propagation of hot electrons. We show via ultrafast x-ray diffraction the capability of our platform to control the spatio-temporal shape of the transient heat and strain. Time-resolved magneto-optical Kerr experiments with systematic tuning of the magnetization precession frequency showcase control of the magnetization dynamics in the Ni layer. Our experimental analysis highlights the role of quasi-static strain as a driver of precession when the magnetic material is rapidly heated via electrons. The effective magnetic field change originating from demagnetization partially compensates the change induced by quasi-static strain. The strain pulses can be shaped via the nanoscale heterostructure design to efficiently drive the precession, paving the way for opto-magneto-acoustic devices with low heat energy deposited in the magnetic layer.
first_indexed 2024-04-24T16:17:29Z
format Article
id doaj.art-56cd3759fe2e4592824bc89486d236fc
institution Directory Open Access Journal
issn 2399-3650
language English
last_indexed 2024-04-24T16:17:29Z
publishDate 2024-03-01
publisher Nature Portfolio
record_format Article
series Communications Physics
spelling doaj.art-56cd3759fe2e4592824bc89486d236fc2024-03-31T11:22:54ZengNature PortfolioCommunications Physics2399-36502024-03-017111010.1038/s42005-024-01602-zControlling effective field contributions to laser-induced magnetization precession by heterostructure designJasmin Jarecki0Maximilian Mattern1Fried-Conrad Weber2Jan-Etienne Pudell3Xi-Guang Wang4Juan-Carlos Rojas Sánchez5Michel Hehn6Alexander von Reppert7Matias Bargheer8Institut für Physik & Astronomie, Universität PotsdamInstitut für Physik & Astronomie, Universität PotsdamInstitut für Physik & Astronomie, Universität PotsdamInstitut für Physik & Astronomie, Universität PotsdamSchool of Physics and Electronics, Central South UniversityInstitut Jean Lamour (UMR CNRS 7198), Université LorraineInstitut Jean Lamour (UMR CNRS 7198), Université LorraineInstitut für Physik & Astronomie, Universität PotsdamInstitut für Physik & Astronomie, Universität PotsdamAbstract Nanoscale heterostructure design can control laser-induced heat dissipation and strain propagation, as well as their efficiency for driving magnetization precession. Here, we incorporate MgO layers into the experimental platform of metallic Pt-Cu-Ni heterostructures to block the propagation of hot electrons. We show via ultrafast x-ray diffraction the capability of our platform to control the spatio-temporal shape of the transient heat and strain. Time-resolved magneto-optical Kerr experiments with systematic tuning of the magnetization precession frequency showcase control of the magnetization dynamics in the Ni layer. Our experimental analysis highlights the role of quasi-static strain as a driver of precession when the magnetic material is rapidly heated via electrons. The effective magnetic field change originating from demagnetization partially compensates the change induced by quasi-static strain. The strain pulses can be shaped via the nanoscale heterostructure design to efficiently drive the precession, paving the way for opto-magneto-acoustic devices with low heat energy deposited in the magnetic layer.https://doi.org/10.1038/s42005-024-01602-z
spellingShingle Jasmin Jarecki
Maximilian Mattern
Fried-Conrad Weber
Jan-Etienne Pudell
Xi-Guang Wang
Juan-Carlos Rojas Sánchez
Michel Hehn
Alexander von Reppert
Matias Bargheer
Controlling effective field contributions to laser-induced magnetization precession by heterostructure design
Communications Physics
title Controlling effective field contributions to laser-induced magnetization precession by heterostructure design
title_full Controlling effective field contributions to laser-induced magnetization precession by heterostructure design
title_fullStr Controlling effective field contributions to laser-induced magnetization precession by heterostructure design
title_full_unstemmed Controlling effective field contributions to laser-induced magnetization precession by heterostructure design
title_short Controlling effective field contributions to laser-induced magnetization precession by heterostructure design
title_sort controlling effective field contributions to laser induced magnetization precession by heterostructure design
url https://doi.org/10.1038/s42005-024-01602-z
work_keys_str_mv AT jasminjarecki controllingeffectivefieldcontributionstolaserinducedmagnetizationprecessionbyheterostructuredesign
AT maximilianmattern controllingeffectivefieldcontributionstolaserinducedmagnetizationprecessionbyheterostructuredesign
AT friedconradweber controllingeffectivefieldcontributionstolaserinducedmagnetizationprecessionbyheterostructuredesign
AT janetiennepudell controllingeffectivefieldcontributionstolaserinducedmagnetizationprecessionbyheterostructuredesign
AT xiguangwang controllingeffectivefieldcontributionstolaserinducedmagnetizationprecessionbyheterostructuredesign
AT juancarlosrojassanchez controllingeffectivefieldcontributionstolaserinducedmagnetizationprecessionbyheterostructuredesign
AT michelhehn controllingeffectivefieldcontributionstolaserinducedmagnetizationprecessionbyheterostructuredesign
AT alexandervonreppert controllingeffectivefieldcontributionstolaserinducedmagnetizationprecessionbyheterostructuredesign
AT matiasbargheer controllingeffectivefieldcontributionstolaserinducedmagnetizationprecessionbyheterostructuredesign