FoG-Oriented Secure and Lightweight Data Aggregation in IoMT

Internet of Medical Things (IoMT) is becoming an essential part of remote health monitoring due to the evolution of medical wireless sensors and intelligent communication technologies. IoT-based healthcare applications are employed in the medical centers to provide continuous health monitoring of a...

Full description

Bibliographic Details
Main Authors: Muhammad Azeem, Ata Ullah, Humaira Ashraf, Nz Jhanjhi, Mamoona Humayun, Sultan Aljahdali, Thamer A. Tabbakh
Format: Article
Language:English
Published: IEEE 2021-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/9502702/
Description
Summary:Internet of Medical Things (IoMT) is becoming an essential part of remote health monitoring due to the evolution of medical wireless sensors and intelligent communication technologies. IoT-based healthcare applications are employed in the medical centers to provide continuous health monitoring of a patient. However, recent smart medical devices have limited resources to handle the huge amount of healthcare data. IoMT faces several challenging issues, like security, privacy, anonymity, and interoperability. In data aggregation and communication, the privacy and security of medical information is a demanding task. Therefore, we proposed a suitable scheme to overcome the limitations of existing research studies. This paper presents an Efficient and Secure Data Transmission and Aggregation (ESDTA) scheme to enhance aggregation efficiency and data security. Our proposed work provides secure data aggregation and data forwarding of healthcare parameter values by employing the Secure Message Aggregation (SMA) algorithm and Secure Message Decryption (SMD) algorithm at the Mobile Node (MN) and Fog Node (FN), respectively. From a security perspective, the proposed scheme preserves the data integrity and also protect against several security threats like data fabrication and replay attack. The proposed scenario is simulated through simulation tool NS 2.35. The simulation results prove that aggregation at the MN effectively reduces transmission and communication costs. Furthermore, the effective computation at the FN minimizes the storage and computational cost at the cloud server. Thus, the analysis of the proposed scheme shows the supremacy of our proposed work. We compare our scheme with other related secure data aggregation-based schemes in terms of communication cost, energy consumption, resilience, storage and computational cost.
ISSN:2169-3536