Dual-comb quartz-enhanced photoacoustic spectroscopy

Photoacoustic spectroscopy (PAS) using two optical combs is a new-born technique, offering appealing features, including broad optical bandwidths, high resolutions, fast acquisition speeds, and wavelength-independent photoacoustic detection, for chemical sensing. However, its further application to,...

Full description

Bibliographic Details
Main Authors: Xinyi Ren, Ming Yan, Zhaoyang Wen, Hui Ma, Ran Li, Kun Huang, Heping Zeng
Format: Article
Language:English
Published: Elsevier 2022-12-01
Series:Photoacoustics
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2213597922000684
Description
Summary:Photoacoustic spectroscopy (PAS) using two optical combs is a new-born technique, offering appealing features, including broad optical bandwidths, high resolutions, fast acquisition speeds, and wavelength-independent photoacoustic detection, for chemical sensing. However, its further application to, e.g., trace detection, is jeopardized due to the fundamentally and technically limited sensitivity and specificity. Here, we take a different route to comb-enabled PAS with acoustically enhanced sensitivity and nonlinear spectral hole-burning defined resolution. We demonstrate dual-comb quartz-enhanced PAS with two near-infrared electro-optic combs and a quartz tuning fork. Comb-line-resolved multiplexed spectra are acquired for acetylene with a single-pass detection limit at the parts-per-billion level. The technique is further extended to the mid-infrared (for methane), enabling improved sensitivity. More importantly, we measure nonlinear dual-comb photoacoustic spectra for the 12C2H2 ν1 + ν3 band P(17) transition with sub-Doppler pressure-broadening dominated homogeneous linewidths (e.g., 45.8 MHz), hence opening up new opportunities for Doppler-free photoacoustic gas sensing.
ISSN:2213-5979