Summary: | Genomic resources such as single nucleotide polymorphism (SNPs), insertions and deletions (InDels) and SSRs (simple sequence repeats) are essential for crop improvement and better utilization in genetic breeding. However, the resources for the sacred lotus (Nelumbo nucifera Gaertn.) are still limited. In the present study, to dissect large-scale genomic molecular marker resources for sacred lotus, we re-sequenced a Thailand sacred lotus cultivar 'Chiang Mai wild lotus' and compared with the reported lotus genome 'Middle lake wild lotus'. A total of 3,180,059 SNPs, 328, 251 InDels and 14,191 SVs were found between the two genomes. The functional impact analyses of these SNPs indicated that they may be involved in metabolic processes, binding, catalytic activity, etc. Mining the genome sequences for SSRs showed that 191,657 SSRs were identified with a frequency of one SSR per 4.23 kb and 103,656 SSR primer pairs were designed. Furthermore, 14, 502 EST-SSRs were also indentified using the available RNA-seq data in the NCBI. A subset of 150 SSRs (genomic and EST-SSRs) was randomly selected for validation and genetic diversity analysis. The genotypes could be easily distinguished using these SSR markers and the 'Chiang Mai wild lotus' was obviously differentiated from the other Chinese accessions. This study provides considerable amounts of genomic resources and markers for the quantitative trait locus (QTL) identification and molecular selection of the species, which could have a potential role in various applications in sacred lotus breeding.
|