Lung function in young adulthood in relation to moderate-to-late preterm birth
Background Moderate-to-late preterm birth (32 to <37 weeks of gestation) has been associated with impaired lung function in adolescence, but data in adulthood and physiological phenotyping beyond spirometry are scarce. We aimed to investigate lung function development from adolescence into young...
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
European Respiratory Society
2024-01-01
|
Series: | ERJ Open Research |
Online Access: | http://openres.ersjournals.com/content/10/1/00701-2023.full |
_version_ | 1797278830986002432 |
---|---|
author | Björn Lundberg Simon Kebede Merid Petra Um-Bergström Gang Wang Anna Bergström Sandra Ekström Inger Kull Erik Melén Jenny Hallberg |
author_facet | Björn Lundberg Simon Kebede Merid Petra Um-Bergström Gang Wang Anna Bergström Sandra Ekström Inger Kull Erik Melén Jenny Hallberg |
author_sort | Björn Lundberg |
collection | DOAJ |
description | Background
Moderate-to-late preterm birth (32 to <37 weeks of gestation) has been associated with impaired lung function in adolescence, but data in adulthood and physiological phenotyping beyond spirometry are scarce. We aimed to investigate lung function development from adolescence into young adulthood and to provide physiological phenotyping in individuals born moderate-to-late preterm.
Methods
Lung function data from individuals born moderate-to-late preterm (n=110) and term (37 to <42 weeks of gestation, n=1895) in the Swedish birth cohort BAMSE were used for analysis and included dynamic spirometry, fractional exhaled nitric oxide and multiple breath nitrogen wash-out. Data from 16- and 24-year follow-ups were analysed using regression models stratified on sex and adjusted for smoking. Data-driven latent class analysis was used to phenotype moderate-to-late preterm individuals at 24 years, and groups were related to background factors.
Results
Males born moderate-to-late preterm had lower forced expiratory volume in 1 s (FEV1) at 24 years of age (−0.28 z-score, p=0.045), compared to males born term. In females, no difference was seen at 24 years, partly explained by a significant catch up in FEV1 between 16 and 24 years (0.18 z-score, p=0.01). Lung function phenotypes described as “asthma-like”, “dysanapsis-like” and “preterm reference” were identified within the preterm group. Maternal overweight in early pregnancy was associated with “asthma-like” group membership (OR 3.59, p=0.02).
Conclusion
Our results show impaired FEV1 at peak lung function in males born moderate-to-late preterm, while females born moderate-to-late preterm had significant catch up between the ages of 16 and 24 years. Several phenotypes of lung function impairment exist in individuals born moderate-to-late preterm. |
first_indexed | 2024-03-07T16:14:53Z |
format | Article |
id | doaj.art-570585fb03f34a408911737c2f1bbede |
institution | Directory Open Access Journal |
issn | 2312-0541 |
language | English |
last_indexed | 2024-03-07T16:14:53Z |
publishDate | 2024-01-01 |
publisher | European Respiratory Society |
record_format | Article |
series | ERJ Open Research |
spelling | doaj.art-570585fb03f34a408911737c2f1bbede2024-03-04T11:30:00ZengEuropean Respiratory SocietyERJ Open Research2312-05412024-01-0110110.1183/23120541.00701-202300701-2023Lung function in young adulthood in relation to moderate-to-late preterm birthBjörn Lundberg0Simon Kebede Merid1Petra Um-Bergström2Gang Wang3Anna Bergström4Sandra Ekström5Inger Kull6Erik Melén7Jenny Hallberg8 Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden Background Moderate-to-late preterm birth (32 to <37 weeks of gestation) has been associated with impaired lung function in adolescence, but data in adulthood and physiological phenotyping beyond spirometry are scarce. We aimed to investigate lung function development from adolescence into young adulthood and to provide physiological phenotyping in individuals born moderate-to-late preterm. Methods Lung function data from individuals born moderate-to-late preterm (n=110) and term (37 to <42 weeks of gestation, n=1895) in the Swedish birth cohort BAMSE were used for analysis and included dynamic spirometry, fractional exhaled nitric oxide and multiple breath nitrogen wash-out. Data from 16- and 24-year follow-ups were analysed using regression models stratified on sex and adjusted for smoking. Data-driven latent class analysis was used to phenotype moderate-to-late preterm individuals at 24 years, and groups were related to background factors. Results Males born moderate-to-late preterm had lower forced expiratory volume in 1 s (FEV1) at 24 years of age (−0.28 z-score, p=0.045), compared to males born term. In females, no difference was seen at 24 years, partly explained by a significant catch up in FEV1 between 16 and 24 years (0.18 z-score, p=0.01). Lung function phenotypes described as “asthma-like”, “dysanapsis-like” and “preterm reference” were identified within the preterm group. Maternal overweight in early pregnancy was associated with “asthma-like” group membership (OR 3.59, p=0.02). Conclusion Our results show impaired FEV1 at peak lung function in males born moderate-to-late preterm, while females born moderate-to-late preterm had significant catch up between the ages of 16 and 24 years. Several phenotypes of lung function impairment exist in individuals born moderate-to-late preterm.http://openres.ersjournals.com/content/10/1/00701-2023.full |
spellingShingle | Björn Lundberg Simon Kebede Merid Petra Um-Bergström Gang Wang Anna Bergström Sandra Ekström Inger Kull Erik Melén Jenny Hallberg Lung function in young adulthood in relation to moderate-to-late preterm birth ERJ Open Research |
title | Lung function in young adulthood in relation to moderate-to-late preterm birth |
title_full | Lung function in young adulthood in relation to moderate-to-late preterm birth |
title_fullStr | Lung function in young adulthood in relation to moderate-to-late preterm birth |
title_full_unstemmed | Lung function in young adulthood in relation to moderate-to-late preterm birth |
title_short | Lung function in young adulthood in relation to moderate-to-late preterm birth |
title_sort | lung function in young adulthood in relation to moderate to late preterm birth |
url | http://openres.ersjournals.com/content/10/1/00701-2023.full |
work_keys_str_mv | AT bjornlundberg lungfunctioninyoungadulthoodinrelationtomoderatetolatepretermbirth AT simonkebedemerid lungfunctioninyoungadulthoodinrelationtomoderatetolatepretermbirth AT petraumbergstrom lungfunctioninyoungadulthoodinrelationtomoderatetolatepretermbirth AT gangwang lungfunctioninyoungadulthoodinrelationtomoderatetolatepretermbirth AT annabergstrom lungfunctioninyoungadulthoodinrelationtomoderatetolatepretermbirth AT sandraekstrom lungfunctioninyoungadulthoodinrelationtomoderatetolatepretermbirth AT ingerkull lungfunctioninyoungadulthoodinrelationtomoderatetolatepretermbirth AT erikmelen lungfunctioninyoungadulthoodinrelationtomoderatetolatepretermbirth AT jennyhallberg lungfunctioninyoungadulthoodinrelationtomoderatetolatepretermbirth |