Ground states of a Kirchhoff equation with the potential on the lattice graphs

<p>In this paper, we study the nonlinear Kirchhoff equation</p> <p class="disp_formula">$ \begin{align*} -\Big(a+b\int_{\mathbb{Z}^{3}}|\nabla u|^{2} d \mu\Big)\Delta u+V(x)u = f(u) \end{align*} $</p> <p>on lattice graph $ \mathbb{Z}^3 $, where $ a, b &a...

Full description

Bibliographic Details
Main Author: Wenqian Lv
Format: Article
Language:English
Published: AIMS Press 2023-11-01
Series:Communications in Analysis and Mechanics
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/cam.2023038?viewType=HTML
Description
Summary:<p>In this paper, we study the nonlinear Kirchhoff equation</p> <p class="disp_formula">$ \begin{align*} -\Big(a+b\int_{\mathbb{Z}^{3}}|\nabla u|^{2} d \mu\Big)\Delta u+V(x)u = f(u) \end{align*} $</p> <p>on lattice graph $ \mathbb{Z}^3 $, where $ a, b &gt; 0 $ are constants and $ V:\mathbb{Z}^{3}\rightarrow \mathbb{R} $ is a positive function. Under a Nehari-type condition and 4-superlinearity condition on $ f $, we use the Nehari method to prove the existence of ground-state solutions to the above equation when $ V $ is coercive. Moreover, we extend the result to noncompact cases in which $ V $ is a periodic function or a bounded potential well.</p>
ISSN:2836-3310