Investigation of the effects of temperature and ions on the interaction between ECG and BSA by the fluorescence quenching method

The effects of temperature and common ions on binding (-)-epicatechin gallate (ECG) to bovine serum albumin (BSA) are investigated. The binding constants (Ka) between ECG and BSA are 1.20 Ч 106 (17°C), 1.38 Ч 106 (27°C), and 5.69 x 106 L mol-1 (37°C), and the number of binding sites (n) were 1.14...

Full description

Bibliographic Details
Main Authors: Zhao Jinyao, Jiang Xinyu, Liu Xin, Ren Fenglian
Format: Article
Language:English
Published: University of Belgrade, University of Novi Sad 2011-01-01
Series:Archives of Biological Sciences
Subjects:
Online Access:http://www.doiserbia.nb.rs/img/doi/0354-4664/2011/0354-46641102325Z.pdf
Description
Summary:The effects of temperature and common ions on binding (-)-epicatechin gallate (ECG) to bovine serum albumin (BSA) are investigated. The binding constants (Ka) between ECG and BSA are 1.20 Ч 106 (17°C), 1.38 Ч 106 (27°C), and 5.69 x 106 L mol-1 (37°C), and the number of binding sites (n) were 1.14, 1.15, and 1.26, respectively. These results showed that the increasing temperature improves the stability of the ECG-BSA system, which results in a higher binding constant and the number of binding sites of the ECG-BSA system. The presence of Co2+ and Zn2+ ions decreased the binding constants (Ka) and the number of binding sites (n) of ECG-BSA complex. However, the presence of Cu2+ and Ni2+ increased the affinity of ECG for BSA largely. The positive ΔH and positive ΔS indicated that hydrophobic forces might play a major role in the binding between ECG and BSA.
ISSN:0354-4664