Influence of Chemical Substitution and Light Element Insertion on the Magnetic Properties of Nanocrystalline Pr<sub>2</sub>Co<sub>7</sub> Compound

It is well recognized that intermetallics based on rare-earth (R) and transition metals (T) display numerous interesting magnetic properties, leading to potential applications in different fields. The latest progress regarding magnetic properties and the magnetocaloric effect (MCE) in the nanostruct...

Full description

Bibliographic Details
Main Authors: Riadh Fersi, Najeh Mliki, Lotfi Bessais
Format: Article
Language:English
Published: MDPI AG 2022-01-01
Series:Magnetochemistry
Subjects:
Online Access:https://www.mdpi.com/2312-7481/8/2/20
_version_ 1827654149966135296
author Riadh Fersi
Najeh Mliki
Lotfi Bessais
author_facet Riadh Fersi
Najeh Mliki
Lotfi Bessais
author_sort Riadh Fersi
collection DOAJ
description It is well recognized that intermetallics based on rare-earth (R) and transition metals (T) display numerous interesting magnetic properties, leading to potential applications in different fields. The latest progress regarding magnetic properties and the magnetocaloric effect (MCE) in the nanostructured Pr<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>Co<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>7</mn></msub></semantics></math></inline-formula> compound, as well as its carbides and hydrides, is reviewed in this paper. Some of this progress reveals remarkable MCE performance, which makes it attractive in the field of magnetic refrigeration at high temperatures. With the purpose of understanding the magnetic and magnetocaloric characteristics of these compounds, the crystal structure, microstructure, and magnetism are also brought into focus. The Pr<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>Co<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>7</mn></msub></semantics></math></inline-formula> compound has interesting magnetic properties, such as a high Curie temperature T<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mi>C</mi></msub></semantics></math></inline-formula> and uniaxial magnetocrystalline anisotropy. It crystallizes in a hexagonal structure (2:7 H) of the Ce<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>Ni<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>7</mn></msub></semantics></math></inline-formula> type and is stable at relatively low temperatures (T<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mi>a</mi></msub></semantics></math></inline-formula> ≤ 1023 K), or it has a rhombohedral structure (2:7 R) of the Gd<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>Co<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>7</mn></msub></semantics></math></inline-formula> type and is stable at high temperatures (T<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mi>a</mi></msub></semantics></math></inline-formula> ≥ 1223 K). Studies of the magnetocaloric properties of the nanocrystalline Pr<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>Co<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>7</mn></msub></semantics></math></inline-formula> compound have shown the existence of a large reversible magnetic entropy change (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>Δ</mo></semantics></math></inline-formula>S<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mi>M</mi></msub></semantics></math></inline-formula>) with a second-order magnetic transition. After its substitution, we showed that nanocrystalline Pr<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>Co<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mn>7</mn><mo>−</mo><mi>x</mi></mrow></msub></semantics></math></inline-formula>Fe<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mi>x</mi></msub></semantics></math></inline-formula> compounds that were annealed at T<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mi>a</mi></msub></semantics></math></inline-formula> = 973 K crystallized in the 2:7 H structure similarly to the parent compound. The extended X-ray absorption fine-structure (EXAFS) spectra adjustments showed that Fe atoms preferably occupy the 12k site for x ≤ 1. The study of the magnetic properties of nanocrystalline Pr<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>Co<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mn>7</mn><mo>−</mo><mi>x</mi></mrow></msub></semantics></math></inline-formula>Fe<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mi>x</mi></msub></semantics></math></inline-formula> compounds revealed an increase in T<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mi>C</mi></msub></semantics></math></inline-formula> of about 26% for x = 0.5, as well as an improvement in the coercivity, H<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mi>c</mi></msub></semantics></math></inline-formula> (12 kOe), and the (BH)<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mi>max</mi></msub></semantics></math></inline-formula> (9 MGOe) product. On the other hand, the insertion of C atoms into the Pr<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>Co<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>7</mn></msub></semantics></math></inline-formula> cell led to a marked improvement in the T<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mi>C</mi></msub></semantics></math></inline-formula> value of 21.6%. The best magnetic properties were found for the Pr<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>Co<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>7</mn></msub></semantics></math></inline-formula>C<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mn>0.25</mn></mrow></msub></semantics></math></inline-formula> compound annealed at 973 K, H<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mi>c</mi></msub></semantics></math></inline-formula> = 10.3 kOe, and (BH)<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mi>max</mi></msub></semantics></math></inline-formula> = 11.5 MGOe. We studied the microstructure, hydrogenation, and magnetic properties of nanocrystalline Pr<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>Co<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>7</mn></msub></semantics></math></inline-formula>H<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mi>x</mi></msub></semantics></math></inline-formula> hydrides. The crystal structure of the Pr<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>Co<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>7</mn></msub></semantics></math></inline-formula> compound transformed from a hexagonal (P6<sub>3</sub>/mmc) into an orthorhombic (Pbcn) and monoclinic (C2/c) structure during hydrogenation. The absorption of H by the Pr<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>Co<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>7</mn></msub></semantics></math></inline-formula> compound led to an increase in the T<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mi>C</mi></msub></semantics></math></inline-formula> value from 600 K at x = 0 to 691 K at x = 3.75. The Pr<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>Co<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>7</mn></msub></semantics></math></inline-formula>H<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mn>0.25</mn></mrow></msub></semantics></math></inline-formula> hydride had optimal magnetic properties: H<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mi>c</mi></msub></semantics></math></inline-formula> = 6.1 KOe, (BH)<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mi>max</mi></msub></semantics></math></inline-formula> = 5.8 MGOe, and T<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mi>C</mi></msub></semantics></math></inline-formula> = 607 K. We tailored the mean field theory (MFT) and random magnetic anisotropy (RMA) methods to investigate the magnetic moments, exchange interactions, and magnetic anisotropy properties. The relationship between the microstructure and magnetic properties is discussed. The obtained results provide a fundamental reference for adapting the magnetic properties of the Pr<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>Co<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>7</mn></msub></semantics></math></inline-formula>, Pr<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>Co<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mn>6.5</mn></mrow></msub></semantics></math></inline-formula>Fe<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mn>0.5</mn></mrow></msub></semantics></math></inline-formula>, Pr<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>Co<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>7</mn></msub></semantics></math></inline-formula>C<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mn>0.25</mn></mrow></msub></semantics></math></inline-formula>, and Pr<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>Co<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>7</mn></msub></semantics></math></inline-formula>H<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mn>0.25</mn></mrow></msub></semantics></math></inline-formula> compounds for potential permanent nanomagnets, high-density magnetic recording, and magnetic refrigeration applications.
first_indexed 2024-03-09T21:33:18Z
format Article
id doaj.art-57206a4328ee4dfba844751e68dd6f0c
institution Directory Open Access Journal
issn 2312-7481
language English
last_indexed 2024-03-09T21:33:18Z
publishDate 2022-01-01
publisher MDPI AG
record_format Article
series Magnetochemistry
spelling doaj.art-57206a4328ee4dfba844751e68dd6f0c2023-11-23T20:49:20ZengMDPI AGMagnetochemistry2312-74812022-01-01822010.3390/magnetochemistry8020020Influence of Chemical Substitution and Light Element Insertion on the Magnetic Properties of Nanocrystalline Pr<sub>2</sub>Co<sub>7</sub> CompoundRiadh Fersi0Najeh Mliki1Lotfi Bessais2Department of Physics, University Paris Est Creteil, CNRS, ICMPE, 2 Rue Henri Dunant, F-94320 Thiais, FranceLaboratory of Materials Organization and Properties, Faculty of Science of Tunis, University of Tunis El Manar, Tunis 2092, TunisiaDepartment of Physics, University Paris Est Creteil, CNRS, ICMPE, 2 Rue Henri Dunant, F-94320 Thiais, FranceIt is well recognized that intermetallics based on rare-earth (R) and transition metals (T) display numerous interesting magnetic properties, leading to potential applications in different fields. The latest progress regarding magnetic properties and the magnetocaloric effect (MCE) in the nanostructured Pr<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>Co<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>7</mn></msub></semantics></math></inline-formula> compound, as well as its carbides and hydrides, is reviewed in this paper. Some of this progress reveals remarkable MCE performance, which makes it attractive in the field of magnetic refrigeration at high temperatures. With the purpose of understanding the magnetic and magnetocaloric characteristics of these compounds, the crystal structure, microstructure, and magnetism are also brought into focus. The Pr<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>Co<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>7</mn></msub></semantics></math></inline-formula> compound has interesting magnetic properties, such as a high Curie temperature T<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mi>C</mi></msub></semantics></math></inline-formula> and uniaxial magnetocrystalline anisotropy. It crystallizes in a hexagonal structure (2:7 H) of the Ce<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>Ni<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>7</mn></msub></semantics></math></inline-formula> type and is stable at relatively low temperatures (T<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mi>a</mi></msub></semantics></math></inline-formula> ≤ 1023 K), or it has a rhombohedral structure (2:7 R) of the Gd<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>Co<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>7</mn></msub></semantics></math></inline-formula> type and is stable at high temperatures (T<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mi>a</mi></msub></semantics></math></inline-formula> ≥ 1223 K). Studies of the magnetocaloric properties of the nanocrystalline Pr<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>Co<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>7</mn></msub></semantics></math></inline-formula> compound have shown the existence of a large reversible magnetic entropy change (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>Δ</mo></semantics></math></inline-formula>S<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mi>M</mi></msub></semantics></math></inline-formula>) with a second-order magnetic transition. After its substitution, we showed that nanocrystalline Pr<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>Co<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mn>7</mn><mo>−</mo><mi>x</mi></mrow></msub></semantics></math></inline-formula>Fe<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mi>x</mi></msub></semantics></math></inline-formula> compounds that were annealed at T<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mi>a</mi></msub></semantics></math></inline-formula> = 973 K crystallized in the 2:7 H structure similarly to the parent compound. The extended X-ray absorption fine-structure (EXAFS) spectra adjustments showed that Fe atoms preferably occupy the 12k site for x ≤ 1. The study of the magnetic properties of nanocrystalline Pr<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>Co<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mn>7</mn><mo>−</mo><mi>x</mi></mrow></msub></semantics></math></inline-formula>Fe<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mi>x</mi></msub></semantics></math></inline-formula> compounds revealed an increase in T<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mi>C</mi></msub></semantics></math></inline-formula> of about 26% for x = 0.5, as well as an improvement in the coercivity, H<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mi>c</mi></msub></semantics></math></inline-formula> (12 kOe), and the (BH)<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mi>max</mi></msub></semantics></math></inline-formula> (9 MGOe) product. On the other hand, the insertion of C atoms into the Pr<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>Co<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>7</mn></msub></semantics></math></inline-formula> cell led to a marked improvement in the T<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mi>C</mi></msub></semantics></math></inline-formula> value of 21.6%. The best magnetic properties were found for the Pr<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>Co<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>7</mn></msub></semantics></math></inline-formula>C<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mn>0.25</mn></mrow></msub></semantics></math></inline-formula> compound annealed at 973 K, H<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mi>c</mi></msub></semantics></math></inline-formula> = 10.3 kOe, and (BH)<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mi>max</mi></msub></semantics></math></inline-formula> = 11.5 MGOe. We studied the microstructure, hydrogenation, and magnetic properties of nanocrystalline Pr<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>Co<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>7</mn></msub></semantics></math></inline-formula>H<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mi>x</mi></msub></semantics></math></inline-formula> hydrides. The crystal structure of the Pr<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>Co<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>7</mn></msub></semantics></math></inline-formula> compound transformed from a hexagonal (P6<sub>3</sub>/mmc) into an orthorhombic (Pbcn) and monoclinic (C2/c) structure during hydrogenation. The absorption of H by the Pr<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>Co<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>7</mn></msub></semantics></math></inline-formula> compound led to an increase in the T<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mi>C</mi></msub></semantics></math></inline-formula> value from 600 K at x = 0 to 691 K at x = 3.75. The Pr<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>Co<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>7</mn></msub></semantics></math></inline-formula>H<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mn>0.25</mn></mrow></msub></semantics></math></inline-formula> hydride had optimal magnetic properties: H<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mi>c</mi></msub></semantics></math></inline-formula> = 6.1 KOe, (BH)<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mi>max</mi></msub></semantics></math></inline-formula> = 5.8 MGOe, and T<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mi>C</mi></msub></semantics></math></inline-formula> = 607 K. We tailored the mean field theory (MFT) and random magnetic anisotropy (RMA) methods to investigate the magnetic moments, exchange interactions, and magnetic anisotropy properties. The relationship between the microstructure and magnetic properties is discussed. The obtained results provide a fundamental reference for adapting the magnetic properties of the Pr<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>Co<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>7</mn></msub></semantics></math></inline-formula>, Pr<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>Co<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mn>6.5</mn></mrow></msub></semantics></math></inline-formula>Fe<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mn>0.5</mn></mrow></msub></semantics></math></inline-formula>, Pr<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>Co<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>7</mn></msub></semantics></math></inline-formula>C<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mn>0.25</mn></mrow></msub></semantics></math></inline-formula>, and Pr<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>Co<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>7</mn></msub></semantics></math></inline-formula>H<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mn>0.25</mn></mrow></msub></semantics></math></inline-formula> compounds for potential permanent nanomagnets, high-density magnetic recording, and magnetic refrigeration applications.https://www.mdpi.com/2312-7481/8/2/20intermetallicsnanomaterialsmicrostructural propertiesmagnetic propertiesmagnetocaloric properties
spellingShingle Riadh Fersi
Najeh Mliki
Lotfi Bessais
Influence of Chemical Substitution and Light Element Insertion on the Magnetic Properties of Nanocrystalline Pr<sub>2</sub>Co<sub>7</sub> Compound
Magnetochemistry
intermetallics
nanomaterials
microstructural properties
magnetic properties
magnetocaloric properties
title Influence of Chemical Substitution and Light Element Insertion on the Magnetic Properties of Nanocrystalline Pr<sub>2</sub>Co<sub>7</sub> Compound
title_full Influence of Chemical Substitution and Light Element Insertion on the Magnetic Properties of Nanocrystalline Pr<sub>2</sub>Co<sub>7</sub> Compound
title_fullStr Influence of Chemical Substitution and Light Element Insertion on the Magnetic Properties of Nanocrystalline Pr<sub>2</sub>Co<sub>7</sub> Compound
title_full_unstemmed Influence of Chemical Substitution and Light Element Insertion on the Magnetic Properties of Nanocrystalline Pr<sub>2</sub>Co<sub>7</sub> Compound
title_short Influence of Chemical Substitution and Light Element Insertion on the Magnetic Properties of Nanocrystalline Pr<sub>2</sub>Co<sub>7</sub> Compound
title_sort influence of chemical substitution and light element insertion on the magnetic properties of nanocrystalline pr sub 2 sub co sub 7 sub compound
topic intermetallics
nanomaterials
microstructural properties
magnetic properties
magnetocaloric properties
url https://www.mdpi.com/2312-7481/8/2/20
work_keys_str_mv AT riadhfersi influenceofchemicalsubstitutionandlightelementinsertiononthemagneticpropertiesofnanocrystallineprsub2subcosub7subcompound
AT najehmliki influenceofchemicalsubstitutionandlightelementinsertiononthemagneticpropertiesofnanocrystallineprsub2subcosub7subcompound
AT lotfibessais influenceofchemicalsubstitutionandlightelementinsertiononthemagneticpropertiesofnanocrystallineprsub2subcosub7subcompound