NetSel-RF: A Model for Network Selection Based on Multi-Criteria and Supervised Learning

Network selection plays a pivotal role in ensuring efficient handover management. Some existing approaches for network selection may use one criterion, such as RSSI (Received Signal Strength Indicator) or SINR (Signal to Interference Noise Ratio). However, these approaches are reactive and may lead...

Full description

Bibliographic Details
Main Authors: Daniela Alexandra Embus, Andres Julián Castillo, Fulvio Yesid Vivas, Oscar Mauricio Caicedo, Armando Ordóñez
Format: Article
Language:English
Published: MDPI AG 2020-06-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/10/12/4382
Description
Summary:Network selection plays a pivotal role in ensuring efficient handover management. Some existing approaches for network selection may use one criterion, such as RSSI (Received Signal Strength Indicator) or SINR (Signal to Interference Noise Ratio). However, these approaches are reactive and may lead to incorrect decisions due to the limited information. Other multi-criteria-based approaches use techniques, such as statistical mathematics, heuristics methods, and neural networks, to optimize the network selection. However, these approaches have shortcomings related to their computational complexity and the unnecessary and frequent handovers. This paper introduces NetSel-RF, a multi-criteria model, based on supervised learning, for network selection in WiFi networks. Here, we describe the created dataset, the data preparation and the evaluation of diverse supervised learning techniques (Random Forest, Support Vector Machine, Adaptive Random Forest, Hoeffding Adaptive Tree, and Hoedding Tree techniques). Our evaluation results show that Random Forest outperforms other algorithms in terms of its accuracy and Matthews correlation coefficient. Additionally, NetSel-RF performs better than the Signal Strong First approach and behaves similarly to the Analytic Hierarchy Process–Technique for Order Preferences by Similarity to the Ideal Solution (AHP-TOPSIS) approach in terms of the number of handovers and throughput drops. Unlike the latter, NetSel-RF is proactive and therefore is more efficient regarding Quality of Services (QoS) and Quality of Experience (QoE) since the end-devices perform the handover before the network link quality degrades.
ISSN:2076-3417