∂¯-equation look at analytic Hilbert's zero-locus theorem

Stemming from the Pythagorean Identity $ \sin^2z+\cos^2z = 1 $ and Hörmander's $ L^2 $-solution of the Cauchy-Riemann's equation $ \bar{\partial}u = f $ on $ \mathbb C $, this article demonstrates a corona-type principle which exists as a somewhat unexpected extension of the analytic Hilbe...

Full description

Bibliographic Details
Main Authors: Xiaofen Lv, Jie Xiao, Cheng Yuan
Format: Article
Language:English
Published: AIMS Press 2022-01-01
Series:Electronic Research Archive
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/era.2022009?viewType=HTML
_version_ 1811182658314567680
author Xiaofen Lv
Jie Xiao
Cheng Yuan
author_facet Xiaofen Lv
Jie Xiao
Cheng Yuan
author_sort Xiaofen Lv
collection DOAJ
description Stemming from the Pythagorean Identity $ \sin^2z+\cos^2z = 1 $ and Hörmander's $ L^2 $-solution of the Cauchy-Riemann's equation $ \bar{\partial}u = f $ on $ \mathbb C $, this article demonstrates a corona-type principle which exists as a somewhat unexpected extension of the analytic Hilbert's Nullstellensatz on $ \mathbb C $ to the quadratic Fock-Sobolev spaces on $ \mathbb C $.
first_indexed 2024-04-11T09:35:33Z
format Article
id doaj.art-573becb9f75c41c6a1aec613d9232386
institution Directory Open Access Journal
issn 2688-1594
language English
last_indexed 2024-04-11T09:35:33Z
publishDate 2022-01-01
publisher AIMS Press
record_format Article
series Electronic Research Archive
spelling doaj.art-573becb9f75c41c6a1aec613d92323862022-12-22T04:31:44ZengAIMS PressElectronic Research Archive2688-15942022-01-0130116817810.3934/era.2022009∂¯-equation look at analytic Hilbert's zero-locus theoremXiaofen Lv 0Jie Xiao1 Cheng Yuan21. Department of Mathematics, Huzhou University, Huzhou, Zhejiang 313000, China2. Department of Mathematics and Statistics, Memorial University, St. John's, NL A1C 5S7, Canada3. School of Mathematics and Statistics, Guangdong University of Technology, Guangzhou, Guangdong 510520, ChinaStemming from the Pythagorean Identity $ \sin^2z+\cos^2z = 1 $ and Hörmander's $ L^2 $-solution of the Cauchy-Riemann's equation $ \bar{\partial}u = f $ on $ \mathbb C $, this article demonstrates a corona-type principle which exists as a somewhat unexpected extension of the analytic Hilbert's Nullstellensatz on $ \mathbb C $ to the quadratic Fock-Sobolev spaces on $ \mathbb C $. https://www.aimspress.com/article/doi/10.3934/era.2022009?viewType=HTMLquadratic fock-sobolev spaceanalytic hilbert's nullstellensatz$ \bar{\partial}u=f $
spellingShingle Xiaofen Lv
Jie Xiao
Cheng Yuan
∂¯-equation look at analytic Hilbert's zero-locus theorem
Electronic Research Archive
quadratic fock-sobolev space
analytic hilbert's nullstellensatz
$ \bar{\partial}u=f $
title ∂¯-equation look at analytic Hilbert's zero-locus theorem
title_full ∂¯-equation look at analytic Hilbert's zero-locus theorem
title_fullStr ∂¯-equation look at analytic Hilbert's zero-locus theorem
title_full_unstemmed ∂¯-equation look at analytic Hilbert's zero-locus theorem
title_short ∂¯-equation look at analytic Hilbert's zero-locus theorem
title_sort ∂¯ equation look at analytic hilbert s zero locus theorem
topic quadratic fock-sobolev space
analytic hilbert's nullstellensatz
$ \bar{\partial}u=f $
url https://www.aimspress.com/article/doi/10.3934/era.2022009?viewType=HTML
work_keys_str_mv AT xiaofenlv equationlookatanalytichilbertszerolocustheorem
AT jiexiao equationlookatanalytichilbertszerolocustheorem
AT chengyuan equationlookatanalytichilbertszerolocustheorem