Synthesis of Magnesium Ferrite-Silver Nanostructures and Investigation of its Photo-catalyst and Magnetic Properties
In this research we first synthesized MgFe2O4 nanostructures via hydrothermal method using (Mg(NO₃)₂.6H₂O) and (Fe(NO₃)₃.9H₂O). The influence of concentration, surfactant, precipitating agent and temperature on the particle size and magnetic properties of the synthesised nanoparticles were examined....
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nanoscience and Nanotechnology Research Center, University of Kashan
2018-01-01
|
Series: | Journal of Nanostructures |
Subjects: | |
Online Access: | http://jns.kashanu.ac.ir/article_56081_3d9051ab92e9ea8e09ab816ea5f05e47.pdf |
Summary: | In this research we first synthesized MgFe2O4 nanostructures via hydrothermal method using (Mg(NO₃)₂.6H₂O) and (Fe(NO₃)₃.9H₂O). The influence of concentration, surfactant, precipitating agent and temperature on the particle size and magnetic properties of the synthesised nanoparticles were examined. Then MgFe2O4-Ag nanocomposites were prepared by a simple chemical precipitation. The structural characteristics of samples were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared (FT-IR). Spectroscopy vibrating sample magnetometer showed that the prepared ferrite nanostructures had ferromagnetic property. The photocatalytic aspects of MgFe2O4-Ag nanoparticles and nanocomposites were measured using the degradation of three azo dyes (acid red, acid violet and methyl orange) under ultraviolet irradiation. Our results confirm the successful formation of MgFe2O4 nanoparticles and MgFe2O4-Ag nanocomposite. It was also shown that the prepared nanostructures had appropriate magnetic properties and photocatalytic performance. <br /> In this research we first synthesized MgFe2O4 nanostructures via hydrothermal method using (Mg(NO₃)₂.6H₂O) and (Fe(NO₃)₃.9H₂O). The influence of concentration, surfactant, precipitating agent and temperature on the particle size and magnetic properties of the synthesised nanoparticles were examined. Then MgFe2O4-Ag nanocomposites were prepared by a simple chemical precipitation. |
---|---|
ISSN: | 2251-7871 2251-788X |