A Deep Learning Framework to Remove the Off-Focused Voxels from the 3D Photons Starved Depth Images

Photons Counted Integral Imaging (PCII) reconstructs 3D scenes with both focused and off-focused voxels. The off-focused portions do not contain or convey any visually valuable information and are therefore redundant. In this work, for the first time, we developed a six-ensembled Deep Neural Network...

Full description

Bibliographic Details
Main Authors: Suchit Patel, Vineela Chandra Dodda, John T. Sheridan, Inbarasan Muniraj
Format: Article
Language:English
Published: MDPI AG 2023-05-01
Series:Photonics
Subjects:
Online Access:https://www.mdpi.com/2304-6732/10/5/583
Description
Summary:Photons Counted Integral Imaging (PCII) reconstructs 3D scenes with both focused and off-focused voxels. The off-focused portions do not contain or convey any visually valuable information and are therefore redundant. In this work, for the first time, we developed a six-ensembled Deep Neural Network (DNN) to identify and remove the off-focused voxels from both the conventional computational integral imaging and PCII techniques. As a preprocessing step, we used the standard Otsu thresholding technique to remove the obvious and unwanted background. We then used the preprocessed data to train the proposed six ensembled DNNs. The results demonstrate that the proposed methodology can efficiently discard the off-focused points and reconstruct a focused-only 3D scene with an accuracy of 98.57%.
ISSN:2304-6732