Efficient Wheat Lodging Detection Using UAV Remote Sensing Images and an Innovative Multi-Branch Classification Framework

Wheat lodging has a significant impact on yields and quality, necessitating the accurate acquisition of lodging information for effective disaster assessment and damage evaluation. This study presents a novel approach for wheat lodging detection in large and heterogeneous fields using UAV remote sen...

Full description

Bibliographic Details
Main Authors: Kai Zhang, Rundong Zhang, Ziqian Yang, Jie Deng, Ahsan Abdullah, Congying Zhou, Xuan Lv, Rui Wang, Zhanhong Ma
Format: Article
Language:English
Published: MDPI AG 2023-09-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/15/18/4572
Description
Summary:Wheat lodging has a significant impact on yields and quality, necessitating the accurate acquisition of lodging information for effective disaster assessment and damage evaluation. This study presents a novel approach for wheat lodging detection in large and heterogeneous fields using UAV remote sensing images. A comprehensive dataset spanning an area of 2.3117 km<sup>2</sup> was meticulously collected and labeled, constituting a valuable resource for this study. Through a comprehensive comparison of algorithmic models, remote sensing data types, and model frameworks, this study demonstrates that the Deeplabv3+ model outperforms various other models, including U-net, Bisenetv2, FastSCN, RTFormer, Bisenetv2, and HRNet, achieving a noteworthy F1 score of 90.22% for detecting wheat lodging. Intriguingly, by leveraging RGB image data alone, the current model achieves high-accuracy rates in wheat lodging detection compared to models trained with multispectral datasets at the same resolution. Moreover, we introduce an innovative multi-branch binary classification framework that surpasses the traditional single-branch multi-classification framework. The proposed framework yielded an outstanding F1 score of 90.30% for detecting wheat lodging and an accuracy of 86.94% for area extraction of wheat lodging, surpassing the single-branch multi-classification framework by an improvement of 7.22%. Significantly, the present comprehensive experimental results showcase the capacity of UAVs and deep learning to detect wheat lodging in expansive areas, demonstrating high efficiency and cost-effectiveness under heterogeneous field conditions. This study offers valuable insights for leveraging UAV remote sensing technology to identify post-disaster damage areas and assess the extent of the damage.
ISSN:2072-4292