Unsettling Physics in the Quantum-Corrected Schwarzschild Black Hole
We study a quantum-corrected Schwarzschild black hole proposed recently in Loop Quantum Gravity. Prompted by the fact that corrections to the innermost stable circular orbit of Schwarzschild diverge, we investigate time-like and null radial geodesics. Massive particles moving radially outwards are c...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-08-01
|
Series: | Symmetry |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-8994/12/8/1264 |
Summary: | We study a quantum-corrected Schwarzschild black hole proposed recently in Loop Quantum Gravity. Prompted by the fact that corrections to the innermost stable circular orbit of Schwarzschild diverge, we investigate time-like and null radial geodesics. Massive particles moving radially outwards are confined, while photons make it to infinity with infinite redshift. This unsettling physics, which deviates radically from both Schwarzschild (near the horizon) and Minkowski (at infinity) is due to repulsion by the negative quantum energy density that makes the quasilocal mass vanish as one approaches spatial infinity. |
---|---|
ISSN: | 2073-8994 |