A Comprehensive Analysis of MSE in Estimating Conditional Hazard Functions: A Local Linear, Single Index Approach for MAR Scenarios

In unveiling the non-parametric estimation of the conditional hazard function through the local linear method, our study yields key insights into the method’s behavior. We present rigorous analyses demonstrating the mean square convergence of the estimator, subject to specific conditions, within the...

Full description

Bibliographic Details
Main Authors: Abderrahmane Belguerna, Hamza Daoudi, Khadidja Abdelhak, Boubaker Mechab, Zouaoui Chikr Elmezouar, Fatimah Alshahrani
Format: Article
Language:English
Published: MDPI AG 2024-02-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/12/3/495
_version_ 1797318456510513152
author Abderrahmane Belguerna
Hamza Daoudi
Khadidja Abdelhak
Boubaker Mechab
Zouaoui Chikr Elmezouar
Fatimah Alshahrani
author_facet Abderrahmane Belguerna
Hamza Daoudi
Khadidja Abdelhak
Boubaker Mechab
Zouaoui Chikr Elmezouar
Fatimah Alshahrani
author_sort Abderrahmane Belguerna
collection DOAJ
description In unveiling the non-parametric estimation of the conditional hazard function through the local linear method, our study yields key insights into the method’s behavior. We present rigorous analyses demonstrating the mean square convergence of the estimator, subject to specific conditions, within the realm of independent observations with missing data. Furthermore, our contributions extend to the derivation of expressions detailing both bias and variance of the estimator. Emphasizing the practical implications, we underscore the applicability of two distinct models discussed in this paper for single index estimation scenarios. These findings not only enhance our understanding of survival analysis methodologies but also provide practitioners with valuable tools for navigating the complexities of missing data in the estimation of conditional hazard functions. Ultimately, our results affirm the robustness of the local linear method in non-parametrically estimating the conditional hazard function, offering a nuanced perspective on its performance in the challenging context of independent observations with missing data.
first_indexed 2024-03-08T03:52:39Z
format Article
id doaj.art-577453d39ca542bc8c01c5df42ebc20a
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-08T03:52:39Z
publishDate 2024-02-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-577453d39ca542bc8c01c5df42ebc20a2024-02-09T15:18:33ZengMDPI AGMathematics2227-73902024-02-0112349510.3390/math12030495A Comprehensive Analysis of MSE in Estimating Conditional Hazard Functions: A Local Linear, Single Index Approach for MAR ScenariosAbderrahmane Belguerna0Hamza Daoudi1Khadidja Abdelhak2Boubaker Mechab3Zouaoui Chikr Elmezouar4Fatimah Alshahrani5Department of Mathematics, Sciences Institute, S.A University Center, P.O. Box 66, Naama 45000, AlgeriaDepartment of Electrical Engineering, College of Technology, Tahri Mohamed University, Al-Qanadisa Road, P.O. Box 417, Bechar 08000, AlgeriaDepartment of Mathematics, Sciences Institute, S.A University Center, P.O. Box 66, Naama 45000, AlgeriaLaboratory of Statistics and Stochastic Processes, University of Djillali Liabes, P.O. Box 89, Sidi Bel Abbes 22000, AlgeriaDepartment of Mathematics, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi ArabiaDepartment of Mathematical Sciences, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi ArabiaIn unveiling the non-parametric estimation of the conditional hazard function through the local linear method, our study yields key insights into the method’s behavior. We present rigorous analyses demonstrating the mean square convergence of the estimator, subject to specific conditions, within the realm of independent observations with missing data. Furthermore, our contributions extend to the derivation of expressions detailing both bias and variance of the estimator. Emphasizing the practical implications, we underscore the applicability of two distinct models discussed in this paper for single index estimation scenarios. These findings not only enhance our understanding of survival analysis methodologies but also provide practitioners with valuable tools for navigating the complexities of missing data in the estimation of conditional hazard functions. Ultimately, our results affirm the robustness of the local linear method in non-parametrically estimating the conditional hazard function, offering a nuanced perspective on its performance in the challenging context of independent observations with missing data.https://www.mdpi.com/2227-7390/12/3/495local polynomial methodconditional hazard estimationmissing at randomsingle index modelmean squared error
spellingShingle Abderrahmane Belguerna
Hamza Daoudi
Khadidja Abdelhak
Boubaker Mechab
Zouaoui Chikr Elmezouar
Fatimah Alshahrani
A Comprehensive Analysis of MSE in Estimating Conditional Hazard Functions: A Local Linear, Single Index Approach for MAR Scenarios
Mathematics
local polynomial method
conditional hazard estimation
missing at random
single index model
mean squared error
title A Comprehensive Analysis of MSE in Estimating Conditional Hazard Functions: A Local Linear, Single Index Approach for MAR Scenarios
title_full A Comprehensive Analysis of MSE in Estimating Conditional Hazard Functions: A Local Linear, Single Index Approach for MAR Scenarios
title_fullStr A Comprehensive Analysis of MSE in Estimating Conditional Hazard Functions: A Local Linear, Single Index Approach for MAR Scenarios
title_full_unstemmed A Comprehensive Analysis of MSE in Estimating Conditional Hazard Functions: A Local Linear, Single Index Approach for MAR Scenarios
title_short A Comprehensive Analysis of MSE in Estimating Conditional Hazard Functions: A Local Linear, Single Index Approach for MAR Scenarios
title_sort comprehensive analysis of mse in estimating conditional hazard functions a local linear single index approach for mar scenarios
topic local polynomial method
conditional hazard estimation
missing at random
single index model
mean squared error
url https://www.mdpi.com/2227-7390/12/3/495
work_keys_str_mv AT abderrahmanebelguerna acomprehensiveanalysisofmseinestimatingconditionalhazardfunctionsalocallinearsingleindexapproachformarscenarios
AT hamzadaoudi acomprehensiveanalysisofmseinestimatingconditionalhazardfunctionsalocallinearsingleindexapproachformarscenarios
AT khadidjaabdelhak acomprehensiveanalysisofmseinestimatingconditionalhazardfunctionsalocallinearsingleindexapproachformarscenarios
AT boubakermechab acomprehensiveanalysisofmseinestimatingconditionalhazardfunctionsalocallinearsingleindexapproachformarscenarios
AT zouaouichikrelmezouar acomprehensiveanalysisofmseinestimatingconditionalhazardfunctionsalocallinearsingleindexapproachformarscenarios
AT fatimahalshahrani acomprehensiveanalysisofmseinestimatingconditionalhazardfunctionsalocallinearsingleindexapproachformarscenarios
AT abderrahmanebelguerna comprehensiveanalysisofmseinestimatingconditionalhazardfunctionsalocallinearsingleindexapproachformarscenarios
AT hamzadaoudi comprehensiveanalysisofmseinestimatingconditionalhazardfunctionsalocallinearsingleindexapproachformarscenarios
AT khadidjaabdelhak comprehensiveanalysisofmseinestimatingconditionalhazardfunctionsalocallinearsingleindexapproachformarscenarios
AT boubakermechab comprehensiveanalysisofmseinestimatingconditionalhazardfunctionsalocallinearsingleindexapproachformarscenarios
AT zouaouichikrelmezouar comprehensiveanalysisofmseinestimatingconditionalhazardfunctionsalocallinearsingleindexapproachformarscenarios
AT fatimahalshahrani comprehensiveanalysisofmseinestimatingconditionalhazardfunctionsalocallinearsingleindexapproachformarscenarios