Characteristics of a Particle’s Incipient Motion from a Rough Wall in Shear Flow of Herschel–Bulkley Fluid

A numerical simulation of the Herschel–Bulkley laminar steady state shear flow around a stationary particle located on a sedimentation layer was carried out. The surface of the sedimentation layer was formed by hemispheres of the same radius as the particle. The drag force, lift force, and torque va...

Full description

Bibliographic Details
Main Authors: Alexander Seryakov, Yaroslav Ignatenko, Oleg B. Bocharov
Format: Article
Language:English
Published: MDPI AG 2024-03-01
Series:Fluids
Subjects:
Online Access:https://www.mdpi.com/2311-5521/9/3/65
_version_ 1797241029153259520
author Alexander Seryakov
Yaroslav Ignatenko
Oleg B. Bocharov
author_facet Alexander Seryakov
Yaroslav Ignatenko
Oleg B. Bocharov
author_sort Alexander Seryakov
collection DOAJ
description A numerical simulation of the Herschel–Bulkley laminar steady state shear flow around a stationary particle located on a sedimentation layer was carried out. The surface of the sedimentation layer was formed by hemispheres of the same radius as the particle. The drag force, lift force, and torque values were obtained in the following ranges: shear Reynolds numbers for a particle <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><msub><mi>e</mi><mrow><mi>S</mi><mi>H</mi></mrow></msub><mo>=</mo><mn>2</mn><mo>–</mo><mn>200</mn></mrow></semantics></math></inline-formula>, corresponding to laminar flow; power law index <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>=</mo><mn>0.6</mn><mo>–</mo><mn>1.0</mn></mrow></semantics></math></inline-formula>; and Bingham number <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>B</mi><mi>n</mi><mo>=</mo><mn>0</mn><mo>–</mo><mn>10</mn></mrow></semantics></math></inline-formula>. A significant difference in the forces and torque acting on a particle in shear flow in comparison to the case of a smooth wall is shown. It is shown that the drag coefficient is on average 6% higher compared to a smooth wall for a Newtonian fluid but decreases with the increase in non-Newtonian properties. At the edge values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>=</mo><mn>0.6</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>B</mi><mi>n</mi><mo>=</mo><mn>10</mn></mrow></semantics></math></inline-formula>, the drag is on average 25% lower compared to the smooth wall. For a Newtonian fluid, the lift coefficient is on average 30% higher compared to a smooth wall. It also decreases with the increase in non-Newtonian properties of the fluid, but at the edge values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>=</mo><mn>0.6</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>B</mi><mi>n</mi><mo>=</mo><mn>10</mn></mrow></semantics></math></inline-formula>, it is on average only 3% lower compared to the smooth wall. Approximation functions for the drag, lift force, and torque coefficient are constructed. A reduction in the drag force and lifting force leads to an increase in critical stresses (Shields number) on the wall on average by 10% for incipient motion (rolling) and by 12% for particle detachment from the sedimentation bed.
first_indexed 2024-04-24T18:16:49Z
format Article
id doaj.art-579346f92bba44aebc8260456ee2ede3
institution Directory Open Access Journal
issn 2311-5521
language English
last_indexed 2024-04-24T18:16:49Z
publishDate 2024-03-01
publisher MDPI AG
record_format Article
series Fluids
spelling doaj.art-579346f92bba44aebc8260456ee2ede32024-03-27T13:38:23ZengMDPI AGFluids2311-55212024-03-01936510.3390/fluids9030065Characteristics of a Particle’s Incipient Motion from a Rough Wall in Shear Flow of Herschel–Bulkley FluidAlexander Seryakov0Yaroslav Ignatenko1Oleg B. Bocharov2OFS Technologies, 1st Krasnogvardeisky pr., 22, 123112 Moscow, RussiaBaker Hughes, Baker-Hughes-Straße 1, 29221 Celle, GermanyIWEP SB RAS, Molodezhnaya Str. 1, 656038 Barnaul, RussiaA numerical simulation of the Herschel–Bulkley laminar steady state shear flow around a stationary particle located on a sedimentation layer was carried out. The surface of the sedimentation layer was formed by hemispheres of the same radius as the particle. The drag force, lift force, and torque values were obtained in the following ranges: shear Reynolds numbers for a particle <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><msub><mi>e</mi><mrow><mi>S</mi><mi>H</mi></mrow></msub><mo>=</mo><mn>2</mn><mo>–</mo><mn>200</mn></mrow></semantics></math></inline-formula>, corresponding to laminar flow; power law index <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>=</mo><mn>0.6</mn><mo>–</mo><mn>1.0</mn></mrow></semantics></math></inline-formula>; and Bingham number <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>B</mi><mi>n</mi><mo>=</mo><mn>0</mn><mo>–</mo><mn>10</mn></mrow></semantics></math></inline-formula>. A significant difference in the forces and torque acting on a particle in shear flow in comparison to the case of a smooth wall is shown. It is shown that the drag coefficient is on average 6% higher compared to a smooth wall for a Newtonian fluid but decreases with the increase in non-Newtonian properties. At the edge values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>=</mo><mn>0.6</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>B</mi><mi>n</mi><mo>=</mo><mn>10</mn></mrow></semantics></math></inline-formula>, the drag is on average 25% lower compared to the smooth wall. For a Newtonian fluid, the lift coefficient is on average 30% higher compared to a smooth wall. It also decreases with the increase in non-Newtonian properties of the fluid, but at the edge values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>=</mo><mn>0.6</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>B</mi><mi>n</mi><mo>=</mo><mn>10</mn></mrow></semantics></math></inline-formula>, it is on average only 3% lower compared to the smooth wall. Approximation functions for the drag, lift force, and torque coefficient are constructed. A reduction in the drag force and lifting force leads to an increase in critical stresses (Shields number) on the wall on average by 10% for incipient motion (rolling) and by 12% for particle detachment from the sedimentation bed.https://www.mdpi.com/2311-5521/9/3/65particlesedimentationrough surfaceshear flowHerschel–Bulkley fluiddrag force
spellingShingle Alexander Seryakov
Yaroslav Ignatenko
Oleg B. Bocharov
Characteristics of a Particle’s Incipient Motion from a Rough Wall in Shear Flow of Herschel–Bulkley Fluid
Fluids
particle
sedimentation
rough surface
shear flow
Herschel–Bulkley fluid
drag force
title Characteristics of a Particle’s Incipient Motion from a Rough Wall in Shear Flow of Herschel–Bulkley Fluid
title_full Characteristics of a Particle’s Incipient Motion from a Rough Wall in Shear Flow of Herschel–Bulkley Fluid
title_fullStr Characteristics of a Particle’s Incipient Motion from a Rough Wall in Shear Flow of Herschel–Bulkley Fluid
title_full_unstemmed Characteristics of a Particle’s Incipient Motion from a Rough Wall in Shear Flow of Herschel–Bulkley Fluid
title_short Characteristics of a Particle’s Incipient Motion from a Rough Wall in Shear Flow of Herschel–Bulkley Fluid
title_sort characteristics of a particle s incipient motion from a rough wall in shear flow of herschel bulkley fluid
topic particle
sedimentation
rough surface
shear flow
Herschel–Bulkley fluid
drag force
url https://www.mdpi.com/2311-5521/9/3/65
work_keys_str_mv AT alexanderseryakov characteristicsofaparticlesincipientmotionfromaroughwallinshearflowofherschelbulkleyfluid
AT yaroslavignatenko characteristicsofaparticlesincipientmotionfromaroughwallinshearflowofherschelbulkleyfluid
AT olegbbocharov characteristicsofaparticlesincipientmotionfromaroughwallinshearflowofherschelbulkleyfluid