A mosaic of phytoplankton responses across Patagonia, the southeast Pacific and the southwest Atlantic to ash deposition and trace metal release from the Calbuco volcanic eruption in 2015

<p>Following the eruption of the Calbuco volcano in April 2015, an extensive ash plume spread across northern Patagonia and into the southeast Pacific and southwest Atlantic oceans. Here, we report on field surveys conducted in the coastal region receiving the highest ash load following the er...

Full description

Bibliographic Details
Main Authors: M. J. Vergara-Jara, M. J. Hopwood, T. J. Browning, I. Rapp, R. Torres, B. Reid, E. P. Achterberg, J. L. Iriarte
Format: Article
Language:English
Published: Copernicus Publications 2021-04-01
Series:Ocean Science
Online Access:https://os.copernicus.org/articles/17/561/2021/os-17-561-2021.pdf
_version_ 1818640983884038144
author M. J. Vergara-Jara
M. J. Vergara-Jara
M. J. Hopwood
T. J. Browning
I. Rapp
R. Torres
R. Torres
B. Reid
E. P. Achterberg
J. L. Iriarte
J. L. Iriarte
author_facet M. J. Vergara-Jara
M. J. Vergara-Jara
M. J. Hopwood
T. J. Browning
I. Rapp
R. Torres
R. Torres
B. Reid
E. P. Achterberg
J. L. Iriarte
J. L. Iriarte
author_sort M. J. Vergara-Jara
collection DOAJ
description <p>Following the eruption of the Calbuco volcano in April 2015, an extensive ash plume spread across northern Patagonia and into the southeast Pacific and southwest Atlantic oceans. Here, we report on field surveys conducted in the coastal region receiving the highest ash load following the eruption (Reloncaví Fjord). The fortuitous location of a long-term monitoring station in Reloncaví Fjord provided data to evaluate inshore phytoplankton bloom dynamics and carbonate chemistry during April–May 2015. Satellite-derived chlorophyll <span class="inline-formula"><i>a</i></span> measurements over the ocean regions affected by the ash plume in May 2015 were obtained to determine the spatial–temporal gradients in the offshore phytoplankton response to ash. Additionally, leaching experiments were performed to quantify the release from ash into solution of total alkalinity, trace elements (dissolved Fe, Mn, Pb, Co, Cu, Ni and Cd) and major ions (F<span class="inline-formula"><sup>−</sup></span>, Cl<span class="inline-formula"><sup>−</sup></span>, SO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">4</mn><mrow><mn mathvariant="normal">2</mn><mo>-</mo></mrow></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="13pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="6734be199742c3e7a0dfe877974848e8"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="os-17-561-2021-ie00001.svg" width="13pt" height="17pt" src="os-17-561-2021-ie00001.png"/></svg:svg></span></span>, NO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="8c72af1edd6d67ed562efcaf5163d22b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="os-17-561-2021-ie00002.svg" width="9pt" height="16pt" src="os-17-561-2021-ie00002.png"/></svg:svg></span></span>, Li<span class="inline-formula"><sup>+</sup></span>, Na<span class="inline-formula"><sup>+</sup></span>, NH<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="a9b2fdba183dceff94210c316afa95ef"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="os-17-561-2021-ie00003.svg" width="8pt" height="15pt" src="os-17-561-2021-ie00003.png"/></svg:svg></span></span>, K<span class="inline-formula"><sup>+</sup></span>, Mg<span class="inline-formula"><sup>2+</sup></span> and Ca<span class="inline-formula"><sup>2+</sup></span>). Within Reloncaví Fjord, integrated peak diatom abundances during the May 2015 austral bloom were approximately 2–4 times higher than usual (up to 1.4 <span class="inline-formula">×</span> 10<span class="inline-formula"><sup>11</sup></span> cells m<span class="inline-formula"><sup>−2</sup></span>, integrated to 15 m depth), with the bloom intensity perhaps moderated due to high ash loadings in the 2 weeks following the eruption. Any mechanistic link between ash deposition and the Reloncaví diatom bloom can, however, only be speculated on due to the lack of data immediately preceding and following the eruption. In the offshore southeast Pacific, a short-duration phytoplankton bloom corresponded closely in space and time to the maximum observed ash plume, potentially in response to Fe fertilisation of a region where phytoplankton growth is typically Fe limited at this time of year. Conversely, no clear fertilisation on the same timescale was found in the area subject to an ash plume over the southwest Atlantic where the availability of fixed nitrogen is thought to limit phytoplankton growth. This was consistent with no significant release of fixed nitrogen (NO<span class="inline-formula"><sub><i>x</i></sub></span> or NH<span class="inline-formula"><sub>4</sub></span>) from Calbuco ash.</p> <p><span id="page562"/>In addition to the release of nanomolar concentrations of dissolved Fe from ash suspended in seawater, it was observed that low loadings (<span class="inline-formula"><i>&lt;</i></span> 5 mg L<span class="inline-formula"><sup>−1</sup></span>) of ash were an unusually prolific source of Fe(II) into chilled seawater (up to 1.0 <span class="inline-formula">µ</span>mol Fe g<span class="inline-formula"><sup>−1</sup></span>), producing a pulse of Fe(II) typically released mainly during the first minute after addition to seawater. This release would not be detected (as Fe(II) or dissolved Fe) following standard leaching protocols at room temperature. A pulse of Fe(II) release upon addition of Calbuco ash to seawater made it an unusually efficient dissolved Fe source. The fraction of dissolved Fe released as Fe(II) from Calbuco ash (<span class="inline-formula">∼</span> 18 %–38 %) was roughly comparable to literature values for Fe released into seawater from aerosols collected over the Pacific Ocean following long-range atmospheric transport.</p>
first_indexed 2024-12-16T23:19:57Z
format Article
id doaj.art-579621f0e5ff426ca42ac8b08f768705
institution Directory Open Access Journal
issn 1812-0784
1812-0792
language English
last_indexed 2024-12-16T23:19:57Z
publishDate 2021-04-01
publisher Copernicus Publications
record_format Article
series Ocean Science
spelling doaj.art-579621f0e5ff426ca42ac8b08f7687052022-12-21T22:12:12ZengCopernicus PublicationsOcean Science1812-07841812-07922021-04-011756157810.5194/os-17-561-2021A mosaic of phytoplankton responses across Patagonia, the southeast Pacific and the southwest Atlantic to ash deposition and trace metal release from the Calbuco volcanic eruption in 2015M. J. Vergara-Jara0M. J. Vergara-Jara1M. J. Hopwood2T. J. Browning3I. Rapp4R. Torres5R. Torres6B. Reid7E. P. Achterberg8J. L. Iriarte9J. L. Iriarte10Programa de Doctorado en Ciencias de la Acuicultura, Universidad Austral de Chile, Puerto Montt, ChileInstituto de Acuicultura and Centro de Investigación Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Universidad Austral de Chile, Puerto Montt, ChileGEOMAR, Helmholtz Centre for Ocean Research Kiel, 24148 Kiel, GermanyGEOMAR, Helmholtz Centre for Ocean Research Kiel, 24148 Kiel, GermanyDepartment of Biology, Dalhousie University, Halifax, Nova Scotia, CanadaInstituto de Acuicultura and Centro de Investigación Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Universidad Austral de Chile, Puerto Montt, ChileCentro de Investigación en Ecosistemas de la Patagonia (CIEP), Coyhaique, ChileCentro de Investigación en Ecosistemas de la Patagonia (CIEP), Coyhaique, ChileGEOMAR, Helmholtz Centre for Ocean Research Kiel, 24148 Kiel, GermanyInstituto de Acuicultura and Centro de Investigación Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Universidad Austral de Chile, Puerto Montt, ChileCOPAS-Sur Austral, Centro de Investigación Oceanográfica en el Pacífico Sur-Oriental (COPAS), Universidad de Concepción, Concepción, Chile<p>Following the eruption of the Calbuco volcano in April 2015, an extensive ash plume spread across northern Patagonia and into the southeast Pacific and southwest Atlantic oceans. Here, we report on field surveys conducted in the coastal region receiving the highest ash load following the eruption (Reloncaví Fjord). The fortuitous location of a long-term monitoring station in Reloncaví Fjord provided data to evaluate inshore phytoplankton bloom dynamics and carbonate chemistry during April–May 2015. Satellite-derived chlorophyll <span class="inline-formula"><i>a</i></span> measurements over the ocean regions affected by the ash plume in May 2015 were obtained to determine the spatial–temporal gradients in the offshore phytoplankton response to ash. Additionally, leaching experiments were performed to quantify the release from ash into solution of total alkalinity, trace elements (dissolved Fe, Mn, Pb, Co, Cu, Ni and Cd) and major ions (F<span class="inline-formula"><sup>−</sup></span>, Cl<span class="inline-formula"><sup>−</sup></span>, SO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">4</mn><mrow><mn mathvariant="normal">2</mn><mo>-</mo></mrow></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="13pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="6734be199742c3e7a0dfe877974848e8"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="os-17-561-2021-ie00001.svg" width="13pt" height="17pt" src="os-17-561-2021-ie00001.png"/></svg:svg></span></span>, NO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="8c72af1edd6d67ed562efcaf5163d22b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="os-17-561-2021-ie00002.svg" width="9pt" height="16pt" src="os-17-561-2021-ie00002.png"/></svg:svg></span></span>, Li<span class="inline-formula"><sup>+</sup></span>, Na<span class="inline-formula"><sup>+</sup></span>, NH<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="a9b2fdba183dceff94210c316afa95ef"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="os-17-561-2021-ie00003.svg" width="8pt" height="15pt" src="os-17-561-2021-ie00003.png"/></svg:svg></span></span>, K<span class="inline-formula"><sup>+</sup></span>, Mg<span class="inline-formula"><sup>2+</sup></span> and Ca<span class="inline-formula"><sup>2+</sup></span>). Within Reloncaví Fjord, integrated peak diatom abundances during the May 2015 austral bloom were approximately 2–4 times higher than usual (up to 1.4 <span class="inline-formula">×</span> 10<span class="inline-formula"><sup>11</sup></span> cells m<span class="inline-formula"><sup>−2</sup></span>, integrated to 15 m depth), with the bloom intensity perhaps moderated due to high ash loadings in the 2 weeks following the eruption. Any mechanistic link between ash deposition and the Reloncaví diatom bloom can, however, only be speculated on due to the lack of data immediately preceding and following the eruption. In the offshore southeast Pacific, a short-duration phytoplankton bloom corresponded closely in space and time to the maximum observed ash plume, potentially in response to Fe fertilisation of a region where phytoplankton growth is typically Fe limited at this time of year. Conversely, no clear fertilisation on the same timescale was found in the area subject to an ash plume over the southwest Atlantic where the availability of fixed nitrogen is thought to limit phytoplankton growth. This was consistent with no significant release of fixed nitrogen (NO<span class="inline-formula"><sub><i>x</i></sub></span> or NH<span class="inline-formula"><sub>4</sub></span>) from Calbuco ash.</p> <p><span id="page562"/>In addition to the release of nanomolar concentrations of dissolved Fe from ash suspended in seawater, it was observed that low loadings (<span class="inline-formula"><i>&lt;</i></span> 5 mg L<span class="inline-formula"><sup>−1</sup></span>) of ash were an unusually prolific source of Fe(II) into chilled seawater (up to 1.0 <span class="inline-formula">µ</span>mol Fe g<span class="inline-formula"><sup>−1</sup></span>), producing a pulse of Fe(II) typically released mainly during the first minute after addition to seawater. This release would not be detected (as Fe(II) or dissolved Fe) following standard leaching protocols at room temperature. A pulse of Fe(II) release upon addition of Calbuco ash to seawater made it an unusually efficient dissolved Fe source. The fraction of dissolved Fe released as Fe(II) from Calbuco ash (<span class="inline-formula">∼</span> 18 %–38 %) was roughly comparable to literature values for Fe released into seawater from aerosols collected over the Pacific Ocean following long-range atmospheric transport.</p>https://os.copernicus.org/articles/17/561/2021/os-17-561-2021.pdf
spellingShingle M. J. Vergara-Jara
M. J. Vergara-Jara
M. J. Hopwood
T. J. Browning
I. Rapp
R. Torres
R. Torres
B. Reid
E. P. Achterberg
J. L. Iriarte
J. L. Iriarte
A mosaic of phytoplankton responses across Patagonia, the southeast Pacific and the southwest Atlantic to ash deposition and trace metal release from the Calbuco volcanic eruption in 2015
Ocean Science
title A mosaic of phytoplankton responses across Patagonia, the southeast Pacific and the southwest Atlantic to ash deposition and trace metal release from the Calbuco volcanic eruption in 2015
title_full A mosaic of phytoplankton responses across Patagonia, the southeast Pacific and the southwest Atlantic to ash deposition and trace metal release from the Calbuco volcanic eruption in 2015
title_fullStr A mosaic of phytoplankton responses across Patagonia, the southeast Pacific and the southwest Atlantic to ash deposition and trace metal release from the Calbuco volcanic eruption in 2015
title_full_unstemmed A mosaic of phytoplankton responses across Patagonia, the southeast Pacific and the southwest Atlantic to ash deposition and trace metal release from the Calbuco volcanic eruption in 2015
title_short A mosaic of phytoplankton responses across Patagonia, the southeast Pacific and the southwest Atlantic to ash deposition and trace metal release from the Calbuco volcanic eruption in 2015
title_sort mosaic of phytoplankton responses across patagonia the southeast pacific and the southwest atlantic to ash deposition and trace metal release from the calbuco volcanic eruption in 2015
url https://os.copernicus.org/articles/17/561/2021/os-17-561-2021.pdf
work_keys_str_mv AT mjvergarajara amosaicofphytoplanktonresponsesacrosspatagoniathesoutheastpacificandthesouthwestatlantictoashdepositionandtracemetalreleasefromthecalbucovolcaniceruptionin2015
AT mjvergarajara amosaicofphytoplanktonresponsesacrosspatagoniathesoutheastpacificandthesouthwestatlantictoashdepositionandtracemetalreleasefromthecalbucovolcaniceruptionin2015
AT mjhopwood amosaicofphytoplanktonresponsesacrosspatagoniathesoutheastpacificandthesouthwestatlantictoashdepositionandtracemetalreleasefromthecalbucovolcaniceruptionin2015
AT tjbrowning amosaicofphytoplanktonresponsesacrosspatagoniathesoutheastpacificandthesouthwestatlantictoashdepositionandtracemetalreleasefromthecalbucovolcaniceruptionin2015
AT irapp amosaicofphytoplanktonresponsesacrosspatagoniathesoutheastpacificandthesouthwestatlantictoashdepositionandtracemetalreleasefromthecalbucovolcaniceruptionin2015
AT rtorres amosaicofphytoplanktonresponsesacrosspatagoniathesoutheastpacificandthesouthwestatlantictoashdepositionandtracemetalreleasefromthecalbucovolcaniceruptionin2015
AT rtorres amosaicofphytoplanktonresponsesacrosspatagoniathesoutheastpacificandthesouthwestatlantictoashdepositionandtracemetalreleasefromthecalbucovolcaniceruptionin2015
AT breid amosaicofphytoplanktonresponsesacrosspatagoniathesoutheastpacificandthesouthwestatlantictoashdepositionandtracemetalreleasefromthecalbucovolcaniceruptionin2015
AT epachterberg amosaicofphytoplanktonresponsesacrosspatagoniathesoutheastpacificandthesouthwestatlantictoashdepositionandtracemetalreleasefromthecalbucovolcaniceruptionin2015
AT jliriarte amosaicofphytoplanktonresponsesacrosspatagoniathesoutheastpacificandthesouthwestatlantictoashdepositionandtracemetalreleasefromthecalbucovolcaniceruptionin2015
AT jliriarte amosaicofphytoplanktonresponsesacrosspatagoniathesoutheastpacificandthesouthwestatlantictoashdepositionandtracemetalreleasefromthecalbucovolcaniceruptionin2015
AT mjvergarajara mosaicofphytoplanktonresponsesacrosspatagoniathesoutheastpacificandthesouthwestatlantictoashdepositionandtracemetalreleasefromthecalbucovolcaniceruptionin2015
AT mjvergarajara mosaicofphytoplanktonresponsesacrosspatagoniathesoutheastpacificandthesouthwestatlantictoashdepositionandtracemetalreleasefromthecalbucovolcaniceruptionin2015
AT mjhopwood mosaicofphytoplanktonresponsesacrosspatagoniathesoutheastpacificandthesouthwestatlantictoashdepositionandtracemetalreleasefromthecalbucovolcaniceruptionin2015
AT tjbrowning mosaicofphytoplanktonresponsesacrosspatagoniathesoutheastpacificandthesouthwestatlantictoashdepositionandtracemetalreleasefromthecalbucovolcaniceruptionin2015
AT irapp mosaicofphytoplanktonresponsesacrosspatagoniathesoutheastpacificandthesouthwestatlantictoashdepositionandtracemetalreleasefromthecalbucovolcaniceruptionin2015
AT rtorres mosaicofphytoplanktonresponsesacrosspatagoniathesoutheastpacificandthesouthwestatlantictoashdepositionandtracemetalreleasefromthecalbucovolcaniceruptionin2015
AT rtorres mosaicofphytoplanktonresponsesacrosspatagoniathesoutheastpacificandthesouthwestatlantictoashdepositionandtracemetalreleasefromthecalbucovolcaniceruptionin2015
AT breid mosaicofphytoplanktonresponsesacrosspatagoniathesoutheastpacificandthesouthwestatlantictoashdepositionandtracemetalreleasefromthecalbucovolcaniceruptionin2015
AT epachterberg mosaicofphytoplanktonresponsesacrosspatagoniathesoutheastpacificandthesouthwestatlantictoashdepositionandtracemetalreleasefromthecalbucovolcaniceruptionin2015
AT jliriarte mosaicofphytoplanktonresponsesacrosspatagoniathesoutheastpacificandthesouthwestatlantictoashdepositionandtracemetalreleasefromthecalbucovolcaniceruptionin2015
AT jliriarte mosaicofphytoplanktonresponsesacrosspatagoniathesoutheastpacificandthesouthwestatlantictoashdepositionandtracemetalreleasefromthecalbucovolcaniceruptionin2015