5-nm LiF as an Efficient Cathode Buffer Layer in Polymer Solar Cells Through Simply Introducing a C60 Interlayer

Abstract Lithium fluoride (LiF) is an efficient and widely used cathode buffer layer (CBL) in bulk heterojunction polymer solar cells (PSCs). The LiF thickness is normally limited to 1 nm due to its insulting property. Such small thickness is difficult to precise control during thermal deposition, a...

Full description

Bibliographic Details
Main Authors: Xiaodong Liu, L. Jay Guo, Yonghao Zheng
Format: Article
Language:English
Published: SpringerOpen 2017-09-01
Series:Nanoscale Research Letters
Subjects:
Online Access:http://link.springer.com/article/10.1186/s11671-017-2299-y
Description
Summary:Abstract Lithium fluoride (LiF) is an efficient and widely used cathode buffer layer (CBL) in bulk heterojunction polymer solar cells (PSCs). The LiF thickness is normally limited to 1 nm due to its insulting property. Such small thickness is difficult to precise control during thermal deposition, and more importantly, 1-nm-thick LiF cannot provide sufficient protection for the underlying active layer. Herein, we demonstrated the application of a very thick LiF as CBL without sacrificing the device efficiency by simply inserting a C60 layer between the active layer and LiF layer. The devices with the C60/LiF (5 nm) double CBLs exhibit a peak power conversion efficiency (PCE) of 3.65%, which is twofold higher than that (1.79%) of LiF (5 nm)-only device. The superior performance of the C60/LiF (5 nm)-based devices is mainly attributed to the good electrical conductivity of the C60/LiF (5 nm) bilayer, arising from the intermixing occurred at the C60/LiF interface. Besides, the formation of a P3HT/C60 subcell and the optical spacer effect of C60 also contribute to the increase in short-circuit current density (J sc) of the device. With further increase of LiF thickness to 8 nm, a PCE of 1.10% is attained for the C60/LiF-based device, while the negligible photovoltaic performance is observed for the LiF-only device. All in all, our results show that C60/LiF bilayer is a promising alternative to LiF single layer due to its high tolerance to the LiF thickness variations.
ISSN:1931-7573
1556-276X