Characterization of Philippine natural bentonite

Philippine natural bentonite is characterized using X-ray diffractometer (XRD), scanning electron microscope (SEM), chemical analysis, thermogravimetric-differential scanning calorimetry (TG-DSC), and Fourier transform infrared (FTIR) analysis. The cation exchange capacity (CEC) was also measured. X...

Full description

Bibliographic Details
Main Authors: Eleanor M. Olegario, Mon Bryan Z. Gili, Mert Celikin
Format: Article
Language:English
Published: Cambridge University Press 2021-01-01
Series:Experimental Results
Subjects:
Online Access:https://www.cambridge.org/core/product/identifier/S2516712X21000162/type/journal_article
Description
Summary:Philippine natural bentonite is characterized using X-ray diffractometer (XRD), scanning electron microscope (SEM), chemical analysis, thermogravimetric-differential scanning calorimetry (TG-DSC), and Fourier transform infrared (FTIR) analysis. The cation exchange capacity (CEC) was also measured. XRD shows that the mineral is composed primarily of mordenite, hectorite, and montmorillonite. SEM shows the flaky and porous structure of the bentonite powder. Chemical analyses show that SiO2 (47.90 wt%) and Al2O3 (14.02 wt%) are the major components of the clay. TG-DSC shows that the mineral contains 15.55% moisture. IR transmittance spectrum shows the common vibration bands present in the sample which include O–H stretching of inter-porous water, symmetric and asymmetric stretching of hydroxyl functional groups, asymmetrical stretching of internal tetrahedra (O–Si–O and O–Al–O), symmetrical stretching of external linkages, and so on. The measured CEC were found to be 91.37 and 43.01 meq/100 g according to the ammonium acetate method and barium acetate method, respectively.
ISSN:2516-712X