Eigenvalue Estimates via Pseudospectra

In this note, given a matrix <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>A</mi><mo>∈</mo><msup><mi mathvariant="double-struck">C</mi><mrow>...

Full description

Bibliographic Details
Main Authors: Georgios Katsouleas, Vasiliki Panagakou, Panayiotis Psarrakos
Format: Article
Language:English
Published: MDPI AG 2021-07-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/9/15/1729
_version_ 1797525311639781376
author Georgios Katsouleas
Vasiliki Panagakou
Panayiotis Psarrakos
author_facet Georgios Katsouleas
Vasiliki Panagakou
Panayiotis Psarrakos
author_sort Georgios Katsouleas
collection DOAJ
description In this note, given a matrix <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>A</mi><mo>∈</mo><msup><mi mathvariant="double-struck">C</mi><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></msup></mrow></semantics></math></inline-formula> (or a general matrix polynomial <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>P</mi><mo>(</mo><mi>z</mi><mo>)</mo></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>z</mi><mo>∈</mo><mi mathvariant="double-struck">C</mi></mrow></semantics></math></inline-formula>) and an arbitrary scalar <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>λ</mi><mn>0</mn></msub><mo>∈</mo><mi mathvariant="double-struck">C</mi></mrow></semantics></math></inline-formula>, we show how to define a sequence <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mfenced separators="" open="{" close="}"><msub><mi>μ</mi><mi>k</mi></msub></mfenced><mrow><mi>k</mi><mo>∈</mo><mi mathvariant="double-struck">N</mi></mrow></msub></semantics></math></inline-formula> which converges to some element of its spectrum. The scalar <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>λ</mi><mn>0</mn></msub></semantics></math></inline-formula> serves as initial term (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>μ</mi><mn>0</mn></msub><mo>=</mo><msub><mi>λ</mi><mn>0</mn></msub></mrow></semantics></math></inline-formula>), while additional terms are constructed through a recursive procedure, exploiting the fact that each term <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>μ</mi><mi>k</mi></msub></semantics></math></inline-formula> of this sequence is in fact a point lying on the boundary curve of some pseudospectral set of <i>A</i> (or <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>P</mi><mo>(</mo><mi>z</mi><mo>)</mo></mrow></semantics></math></inline-formula>). Then, the next term in the sequence is detected in the direction which is normal to this curve at the point <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>μ</mi><mi>k</mi></msub></semantics></math></inline-formula>. Repeating the construction for additional initial points, it is possible to approximate peripheral eigenvalues, localize the spectrum and even obtain spectral enclosures. Hence, as a by-product of our method, a computationally cheap procedure for approximate pseudospectra computations emerges. An advantage of the proposed approach is that it does not make any assumptions on the location of the spectrum. The fact that all computations are performed on some dynamically chosen locations on the complex plane which converge to the eigenvalues, rather than on a large number of predefined points on a rigid grid, can be used to accelerate conventional grid algorithms. Parallel implementation of the method or use in conjunction with randomization techniques can lead to further computational savings when applied to large-scale matrices.
first_indexed 2024-03-10T09:11:58Z
format Article
id doaj.art-57b2dc91a25e4eeda30745c3369ac08f
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-10T09:11:58Z
publishDate 2021-07-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-57b2dc91a25e4eeda30745c3369ac08f2023-11-22T05:55:45ZengMDPI AGMathematics2227-73902021-07-01915172910.3390/math9151729Eigenvalue Estimates via PseudospectraGeorgios Katsouleas0Vasiliki Panagakou1Panayiotis Psarrakos2Department of Mathematics, Zografou Campus, National Technical University of Athens, 15773 Athens, GreeceDepartment of Mathematics, Zografou Campus, National Technical University of Athens, 15773 Athens, GreeceDepartment of Mathematics, Zografou Campus, National Technical University of Athens, 15773 Athens, GreeceIn this note, given a matrix <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>A</mi><mo>∈</mo><msup><mi mathvariant="double-struck">C</mi><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></msup></mrow></semantics></math></inline-formula> (or a general matrix polynomial <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>P</mi><mo>(</mo><mi>z</mi><mo>)</mo></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>z</mi><mo>∈</mo><mi mathvariant="double-struck">C</mi></mrow></semantics></math></inline-formula>) and an arbitrary scalar <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>λ</mi><mn>0</mn></msub><mo>∈</mo><mi mathvariant="double-struck">C</mi></mrow></semantics></math></inline-formula>, we show how to define a sequence <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mfenced separators="" open="{" close="}"><msub><mi>μ</mi><mi>k</mi></msub></mfenced><mrow><mi>k</mi><mo>∈</mo><mi mathvariant="double-struck">N</mi></mrow></msub></semantics></math></inline-formula> which converges to some element of its spectrum. The scalar <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>λ</mi><mn>0</mn></msub></semantics></math></inline-formula> serves as initial term (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>μ</mi><mn>0</mn></msub><mo>=</mo><msub><mi>λ</mi><mn>0</mn></msub></mrow></semantics></math></inline-formula>), while additional terms are constructed through a recursive procedure, exploiting the fact that each term <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>μ</mi><mi>k</mi></msub></semantics></math></inline-formula> of this sequence is in fact a point lying on the boundary curve of some pseudospectral set of <i>A</i> (or <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>P</mi><mo>(</mo><mi>z</mi><mo>)</mo></mrow></semantics></math></inline-formula>). Then, the next term in the sequence is detected in the direction which is normal to this curve at the point <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>μ</mi><mi>k</mi></msub></semantics></math></inline-formula>. Repeating the construction for additional initial points, it is possible to approximate peripheral eigenvalues, localize the spectrum and even obtain spectral enclosures. Hence, as a by-product of our method, a computationally cheap procedure for approximate pseudospectra computations emerges. An advantage of the proposed approach is that it does not make any assumptions on the location of the spectrum. The fact that all computations are performed on some dynamically chosen locations on the complex plane which converge to the eigenvalues, rather than on a large number of predefined points on a rigid grid, can be used to accelerate conventional grid algorithms. Parallel implementation of the method or use in conjunction with randomization techniques can lead to further computational savings when applied to large-scale matrices.https://www.mdpi.com/2227-7390/9/15/1729pseudospectraeigenvaluesmatrix polynomialperturbationPerron rootlarge-scale matrices
spellingShingle Georgios Katsouleas
Vasiliki Panagakou
Panayiotis Psarrakos
Eigenvalue Estimates via Pseudospectra
Mathematics
pseudospectra
eigenvalues
matrix polynomial
perturbation
Perron root
large-scale matrices
title Eigenvalue Estimates via Pseudospectra
title_full Eigenvalue Estimates via Pseudospectra
title_fullStr Eigenvalue Estimates via Pseudospectra
title_full_unstemmed Eigenvalue Estimates via Pseudospectra
title_short Eigenvalue Estimates via Pseudospectra
title_sort eigenvalue estimates via pseudospectra
topic pseudospectra
eigenvalues
matrix polynomial
perturbation
Perron root
large-scale matrices
url https://www.mdpi.com/2227-7390/9/15/1729
work_keys_str_mv AT georgioskatsouleas eigenvalueestimatesviapseudospectra
AT vasilikipanagakou eigenvalueestimatesviapseudospectra
AT panayiotispsarrakos eigenvalueestimatesviapseudospectra